Sciact
  • EN
  • RU

Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov- Pokrovski model) Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 1269-1289 Pages count : 21 DOI: 10.33048/semi.2023.20.076
Tags incompressible viscoelastic polymeric medium, rheological correlation, resting state, linearized mixed problem, Lyapunov stability
Authors Tkachev D.L. 1 , Biberdorf E.A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We study the linear stability of a resting state for ows of incompressible viscoelastic polymeric fluid in an infinite cylindrical channel in axisymmetric perturbation class. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model. We formulate two equations that de ne the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state.
Cite: Tkachev D.L. , Biberdorf E.A.
Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov- Pokrovski model)
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.1269-1289. DOI: 10.33048/semi.2023.20.076 WOS Scopus РИНЦ
Dates:
Submitted: Jan 1, 2023
Published online: Nov 21, 2023
Published print: Dec 31, 2023
Identifiers:
Web of science: WOS:001102184700002
Scopus: 2-s2.0-85179990279
Elibrary: 82134662
Citing:
DB Citing
Web of science 2
Scopus 2
Elibrary 4
Altmetrics: