Rheological Vinogradov-Pokrovski Model. Lyapunov Linear Instability of the Stationary Flows of Polymeric Fluid in an Infinite Plane Channel with Perforated Walls Научная публикация
Конференция |
XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications 20-24 июн. 2022 , Малага |
||
---|---|---|---|
Сборник | Hyperbolic Problems: Theory, Numerics, Applications. Volume I. Proceedings of the XVIII International Conference on Hyperbolic Problems (HYP2022), Málaga, Spain, June 20-24, 2022 Сборник, Springer Cham. 2024. 384 c. ISBN 9783031552595. |
||
Вых. Данные | Год: 2024, Страницы: 373-384 Страниц : 12 DOI: 10.1007/978-3-031-55260-1_29 | ||
Ключевые слова | Incompressible viscoelastic polymeric medium · Vinogradov-Pokrovski model · Infinite plane channel with perforated walls · Stationary flow · Lyapunov linear instability | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0008 |
Реферат:
We study a rheological Vinogradov-Pokrovski model for the flows of solutions and melts of incompressible viscoelastic polymeric medium in case of a f low in an infinite plane channel with perforated walls. We prove the linear Lyapunov instability of the base solution with the constant flow rate in a perturbation class, periodic with respect to the variable, changing along the channel wall.
Библиографическая ссылка:
Tkachev D.L.
Rheological Vinogradov-Pokrovski Model. Lyapunov Linear Instability of the Stationary Flows of Polymeric Fluid in an Infinite Plane Channel with Perforated Walls
В сборнике Hyperbolic Problems: Theory, Numerics, Applications. Volume I. Proceedings of the XVIII International Conference on Hyperbolic Problems (HYP2022), Málaga, Spain, June 20-24, 2022. – Springer Cham., 2024. – C.373-384. – ISBN 9783031552595. DOI: 10.1007/978-3-031-55260-1_29 WOS Scopus OpenAlex
Rheological Vinogradov-Pokrovski Model. Lyapunov Linear Instability of the Stationary Flows of Polymeric Fluid in an Infinite Plane Channel with Perforated Walls
В сборнике Hyperbolic Problems: Theory, Numerics, Applications. Volume I. Proceedings of the XVIII International Conference on Hyperbolic Problems (HYP2022), Málaga, Spain, June 20-24, 2022. – Springer Cham., 2024. – C.373-384. – ISBN 9783031552595. DOI: 10.1007/978-3-031-55260-1_29 WOS Scopus OpenAlex
Даты:
Опубликована в печати: | 20 мая 2024 г. |
Опубликована online: | 20 мая 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001284747900029 |
Scopus: | 2-s2.0-85195946004 |
OpenAlex: | W4399038925 |
Цитирование в БД:
Пока нет цитирований