Sciact
  • EN
  • RU

Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces Научная публикация

Журнал Analysis and Mathematical Physics
ISSN: 1664-2368 , E-ISSN: 1664-235X
Вых. Данные Год: 2013, Том: 3, Номер: 2, Страницы: 119–144 Страниц : 25 DOI: 10.1007/s13324-012-0051-4
Ключевые слова Spherical Harmonic, Homogeneous Space, Hausdorff Measure
Авторы Gichev V.M. 1
Организации
1 Omsk Branch of Sobolev Institute of Mathematics, Pevtsova, 13, 644099, Omsk, Russia

Реферат: Let $M=G/H$ be a compact connected isotropy irreducible Riemannian homogeneous manifold, where is a compact Lie group (may be, disconnected) acting on $M$ by isometries. This class includes all compact irreducible Riemannian symmetric spaces and, for example, the tori $T^n=R^n/Z^n$ with the natural action on itself extended by the finite group generated by all permutations of the coordinates and inversions in circle factors. We say that $u$ is a polynomial on $M$ if it belongs to some $G$-invariant finite dimensional subspace $E$ of $L^2(M)$ . We compute or estimate from above the averages over the unit sphere $S$ in $E$ for some metric quantities such as Hausdorff measures of level set and norms in $L^p(M)$, $1\leq p\leq\infty$, where $M$ is equipped with the invariant probability measure. For example, the averages over $S$ of $\|u\|_{L^p(M)}, $p\geq2$, are less than \sqrt{\frac{p+1}{e}} independently of $M$ and $E$ .
Библиографическая ссылка: Gichev V.M.
Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces
Analysis and Mathematical Physics. 2013. V.3. N2. P.119–144. DOI: 10.1007/s13324-012-0051-4 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 27 авг. 2012 г.
Опубликована online: 1 нояб. 2012 г.
Идентификаторы БД:
Web of science: WOS:000341585700002
Scopus: 2-s2.0-84937897276
РИНЦ: 23981850
OpenAlex: W2140660077
Цитирование в БД:
БД Цитирований
OpenAlex 5
Scopus 5
Web of science 4
РИНЦ 8
Альметрики: