Sciact
  • EN
  • RU

Field-split iterative solver vs direct one for quasi-static Biot equation Научная публикация

Конференция Суперкомпьютерные дни в России 2023
25-26 сент. 2023 , Москва
Сборник Supercomputing : 9th Russian Supercomputing Days, RuSCDays 2023, Moscow, Russia, September 25–26, 2023, Revised Selected Papers
Сборник, Springer Cham. Switzerland.2023. 318 c. ISBN 978-3-031-49432-1.
Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2023, Том: 14388, Страницы: 86-89 Страниц : 15 DOI: 10.1007/978-3-031-49432-1_7
Ключевые слова Poroelasticity · Biot equation · quasi-static state · finite-differences · iterative methods · SLAE direct solvers · field-split preconditioner · scalability
Авторы Solovyev Sergey 1 , Lisitsa Vadim 2
Организации
1 Institute of Mathematics SB RAS
2 Institute of Petroleum Geology and Geophysics SBRAS, Koptugave. 3, Novosibirsk, Russia, 630090

Информация о финансировании (1)

1 Российский научный фонд 22-11-00104

Реферат: Using the Biot equation in scope of the frequency domain and quasi-static state, we can model low-frequency loading and obtain strain-stress relations that vary with frequency for fluid-filled poroelastic materials. To solve the linear algebraic equations resulting from the finite difference discrectisation of the Biot equation, we propose an approach based on the BCSGStab iterative solver and a preconditioner technique based on a field-split approach. In this study, we calculate the approximate amount of floating point operations needed for the suggested technique as well as a direct method. Despite the direct solver’s superior OMPscalability over the iterative one, numerical experiments show that the iterative technique quickly converges and is advantageous for big Biot problems.
Библиографическая ссылка: Solovyev S. , Lisitsa V.
Field-split iterative solver vs direct one for quasi-static Biot equation
В сборнике Supercomputing : 9th Russian Supercomputing Days, RuSCDays 2023, Moscow, Russia, September 25–26, 2023, Revised Selected Papers. – Springer Cham., 2023. – Т.Part I. – C.86-89. – ISBN 978-3-031-49432-1. DOI: 10.1007/978-3-031-49432-1_7 Scopus OpenAlex
Даты:
Опубликована в печати: 1 дек. 2023 г.
Опубликована online: 5 янв. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85182608373
OpenAlex: W4390594809
Цитирование в БД:
БД Цитирований
OpenAlex 1
Scopus 1
Альметрики: