Sciact
  • EN
  • RU

Recovering two coefficients in an elliptic equation via phaseless information Научная публикация

Журнал Inverse Problems and Imaging
ISSN: 1930-8337 , E-ISSN: 1930-8345
Вых. Данные Год: 2018, Том: 13, Номер: 1, Страницы: 81-91 Страниц : 11 DOI: 10.3934/ipi.2019005
Ключевые слова Elliptic equation; Inverse problem; Phaseless information; Uniqueness
Авторы Romanov Vladimir G. 1 , Yamamoto Masahiro 2,3
Организации
1 Sobolev Institute of Mathematics
2 The University of Tokyo
3 Peoples' Friendship University of Russia

Реферат: For fixed y \in R3, we consider the elliptic equation with a refraction index and a potential q(x). Assuming that the refraction index n(x) is different from 1 only inside a bounded compact domain with a smooth boundary S and the potential q(x) vanishes outside of the same domain, we study an inverse problem of finding both coefficients inside domain from some given information on solutions of the elliptic equation. Namely, it is supposed that the point source is a variable parameter of the problem. Then for the solution u(x; y; k) of the above equation satisfying the radiation condition, we assume to be given the following phaseless information f(x; y; k) = ju(x; y; k)j2 for all x; y \in S and for all k > k0 > 0, where k0 is some constant. We prove that this phaseless information uniquely determines both coefficients n(x) and q(x).
Библиографическая ссылка: Romanov V.G. , Yamamoto M.
Recovering two coefficients in an elliptic equation via phaseless information
Inverse Problems and Imaging. 2018. V.13. N1. P.81-91. DOI: 10.3934/ipi.2019005 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: 13 янв. 2018 г.
Принята к публикации: 15 апр. 2018 г.
Идентификаторы БД:
Web of science: WOS:000453255700005
Scopus: 2-s2.0-85065733945
OpenAlex: W2903679794
Цитирование в БД:
БД Цитирований
Scopus 11
OpenAlex 9
Web of science 8
Альметрики: