Sciact
  • EN
  • RU

Application a Taylor series to approximate a function with large gradients Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2023, Том: 20, Номер: 2, Страницы: 1420-1429 Страниц : 10 DOI: 10.33048/semi.2023.20.087
Ключевые слова function of one or two variables with large gradients, boundary layer component, Taylor series approximation, modi cation, error estimation
Авторы Zadorin A.I. 1
Организации
1 Sobolev Institute of Mathematics

Информация о финансировании (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0016

Реферат: The method of approximating functions by polynomials based on Taylor series expansion is widely known. However, the residual term of such an approximation can be significant if the function has large gradients. The work assumes that the function has a decomposition in the form of a sum of regular and boundary layer components. The boundary layer component is a function of general form, known up to a factor, and is responsible for large gradients of the given function. This decomposition is valid, in particular, for the solution of a singularly perturbed problem. To approximate the function, a formula is proposed that uses the Taylor series expansion of the function and is exact for the boundary layer component. Under certain restrictions on the boundary layer component, estimates of the error in the approximation of the function are obtained. These estimates depend only on the regular component. Cases of functions of one and two variables are considered.
Библиографическая ссылка: Zadorin A.I.
Application a Taylor series to approximate a function with large gradients
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.1420-1429. DOI: 10.33048/semi.2023.20.087 WOS Scopus РИНЦ
Даты:
Поступила в редакцию: 15 окт. 2023 г.
Опубликована в печати: 12 дек. 2023 г.
Опубликована online: 12 дек. 2023 г.
Идентификаторы БД:
Web of science: WOS:001164415800009
Scopus: 2-s2.0-85186919082
РИНЦ: 82134673
Цитирование в БД:
БД Цитирований
Web of science 1
Scopus 1
Альметрики: