Sciact
  • EN
  • RU

Thermodynamically Compatible Hyperbolic Model for a Two-Phase Compressible Fluid Flow with Surface Tension Full article

Journal Fluid Dynamics
ISSN: 0015-4628 , E-ISSN: 1573-8507
Output data Year: 2023, Volume: 58, Number: 7, Pages: 1255–1265 Pages count : 11 DOI: 10.1134/S0015462823602103
Tags two-phase flow, surface tension, hyperbolic equations
Authors Romenski E. 1 , Peshkov I. 2
Affiliations
1 Sobolev Institute of Mathematics, Siberian branch, Russian Academy of Sciences, Novosibirsk, Russia
2 University of Trento, Trento, Italy

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0008
2 Russian Science Foundation 22-11-00104

Abstract: A model of a two-phase flow of compressible immiscible fluids is presented. Its derivation is based on the use of the theory of symmetric hyperbolic thermodynamically compatible systems. The model is an extension of the previously proposed thermodynamically compatible model of compressible two-phase flows due to the inclusion of new state variables of a medium associated with surfacetension forces. The governing equations of the model form a hyperbolic system of differential equations of the first order and satisfy the laws of thermodynamics (energy conservation and entropy increase). The properties of the model equations are studied, and it is shown that the Young–Laplace law of capillary pressure is fulfilled in the asymptotic approximation at the continuum level.
Cite: Romenski E. , Peshkov I.
Thermodynamically Compatible Hyperbolic Model for a Two-Phase Compressible Fluid Flow with Surface Tension
Fluid Dynamics. 2023. V.58. N7. P.1255–1265. DOI: 10.1134/S0015462823602103 WOS Scopus РИНЦ OpenAlex
Original: Роменский Е.И. , Пешков И.М.
Термодинамически согласованная гиперболическая модель двухфазного течения сжимаемых жидкостей с учетом поверхностного натяжения
Прикладная математика и механика. 2023. Т.87. №2. С.211-225. DOI: 10.31857/S0032823523020121 РИНЦ OpenAlex
Dates:
Submitted: Feb 2, 2023
Accepted: Mar 5, 2023
Published print: Dec 14, 2023
Published online: Jan 27, 2024
Identifiers:
Web of science: WOS:001149303500012
Scopus: 2-s2.0-85183323093
Elibrary: 64473851
OpenAlex: W4391277931
Citing:
DB Citing
OpenAlex 2
Scopus 1
Web of science 1
Altmetrics: