Primitive prime divisors of Suzuki-Ree groups Full article
Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 62, Number: 1, Pages: 41-49 Pages count : 9 DOI: 10.1007/s10469-023-09722-1 | ||
Tags | primitive prime divisor, Suzuki–Ree groups, prime graph | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0002 |
Abstract:
There is a well-known factorization of the number 22m +1,with m odd, related to the orders of tori of simple Suzuki groups: 22m +1 is a product of a =2m +2(m+1)/2 +1 and b =2m−2(m+1)/2+1. By the Bang–Zsigmondy theorem, there is a primitive prime divisor of 24m −1, that is, a prime r that divides 24m −1 and does not divide 2i−1 for any 1 ⩽ i<4m. It is easy to see that r divides 22m +1, and so it divides one of the numbers a and b. It is proved that for every m>5, eachofa, b is divisible by some primitive prime divisor of 24m − 1. Similar results are obtained for primitive prime divisors related to the simple Ree groups. As an application, we find the independence and 2-independence numbers of the prime graphs of almost simple Suzuki–Ree groups.
Cite:
Grechkoseeva M.A.
Primitive prime divisors of Suzuki-Ree groups
Algebra and Logic. 2023. V.62. N1. P.41-49. DOI: 10.1007/s10469-023-09722-1 WOS Scopus РИНЦ OpenAlex
Primitive prime divisors of Suzuki-Ree groups
Algebra and Logic. 2023. V.62. N1. P.41-49. DOI: 10.1007/s10469-023-09722-1 WOS Scopus РИНЦ OpenAlex
Original:
Гречкосеева М.А.
О примитивных простых делителях порядков групп Сузуки и Ри
Алгебра и логика. 2023. Т.62. №1. С.59-70. DOI: 10.33048/alglog.2023.62.103 РИНЦ
О примитивных простых делителях порядков групп Сузуки и Ри
Алгебра и логика. 2023. Т.62. №1. С.59-70. DOI: 10.33048/alglog.2023.62.103 РИНЦ
Dates:
Submitted: | Sep 13, 2023 |
Accepted: | Oct 30, 2023 |
Published print: | Jan 3, 2024 |
Published online: | Jan 3, 2024 |
Identifiers:
Web of science: | WOS:001139076400004 |
Scopus: | 2-s2.0-85181232772 |
Elibrary: | 65486469 |
OpenAlex: | W4390543659 |