Sciact
  • EN
  • RU

Unsolvability of finite groups isospectral to automorphism group of the second sporsdic Janko group Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2023, Volume: 62, Number: 1, Pages: 50-53 Pages count : 4 DOI: 10.1007/s10469-023-09723-0
Tags automorphism group, Janko group, spectrum
Authors Zhurtov A.KH 1 , Lytkina D.V. 2,4 , Mazurov V.D. 3
Affiliations
1 Kabardino-Balkarian State University
2 Siberian State University of Telecommunications and Information Sciences
3 Novosibirsk State University
4 Sobolev Institute of Mathematics

Funding (1)

1 Russian Science Foundation 23-41-10003

Abstract: For a finite group G, the spectrum is the set ω(G) of element orders of the group G. The spectrum of G is closed under divisibility and is therefore uniquely determined by the set μ(G) consisting of elements of ω(G) that are maximal with respect to divisibility. We prove that a finite group isospectral to Aut(J2) is unsolvable.
Cite: Zhurtov A.K. , Lytkina D.V. , Mazurov V.D.
Unsolvability of finite groups isospectral to automorphism group of the second sporsdic Janko group
Algebra and Logic. 2023. V.62. N1. P.50-53. DOI: 10.1007/s10469-023-09723-0 WOS Scopus РИНЦ OpenAlex
Original: Журтов А.Х. , Лыткина Д.В. , Мазуров В.Д.
Неразрешимость конечных групп, изоспектральных группе автоморфизмов второй спорадической группы Янко
Алгебра и логика. 2023. Т.62. №1. С.71-75. DOI: 10.33048/alglog.2023.62.104 РИНЦ
Dates:
Submitted: Jul 25, 2023
Accepted: Oct 30, 2023
Published print: Dec 28, 2023
Published online: Dec 28, 2023
Identifiers:
Web of science: WOS:001132426200001
Scopus: 2-s2.0-85180664922
Elibrary: 64756400
OpenAlex: W4390348380
Citing:
DB Citing
OpenAlex 1
Scopus 1
Web of science 1
Elibrary 1
Altmetrics: