Sciact
  • EN
  • RU

Periodic groups with one finite nontrivial Sylow 2-subgroup Full article

Journal Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605
Output data Year: 2023, Volume: 323, Suppl 1, Pages: S160-S167 Pages count : 8 DOI: 10.1134/S0081543823060147
Tags periodic group, exponent, Sylow 2-subgroup, dihedral group, direct product, saturating set.
Authors Lytkina D.V. 1 , Mazurov V.D. 2
Affiliations
1 Siberian State University ofTelecommunications and Information Science, Novosibirsk, 630102 Russia
2 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: The following results are proved. Let d be a natural number, and let G be a group of finite even exponent such that each of its finite subgroups is contained in a subgroup isomorphic to the direct product of m dihedral groups, where m ≤ d. Then G is finite (and isomorphic to the direct product of at most d dihedral groups). Next, suppose that G is a periodic group and p is an odd prime. If every finite subgroup of G is contained in a subgroup isomorphic to the direct product D1 × D2, where Di is a dihedral group of order 2pri with natural ri, i = 1,2, then G = M1 × M2, where Mi = Hi,t , ti is an element of order 2, Hi is a locally cyclic p-group, and hti = h−1 for every h ∈ Hi, i = 1,2. Now, suppose that d is a natural number and G is a solvable periodic group such that every of its finite subgroups is contained in a subgroup isomorphic to the direct product of at most d dihedral groups. Then G is locally finite and is an extension of an abelian normal subgroup by an elementary abelian 2-subgroup of order at most 22d.
Cite: Lytkina D.V. , Mazurov V.D.
Periodic groups with one finite nontrivial Sylow 2-subgroup
Proceedings of the Steklov Institute of Mathematics. 2023. V.323, Suppl 1. P.S160-S167. DOI: 10.1134/S0081543823060147 WOS Scopus РИНЦ OpenAlex
Original: Лыткина Д.В. , Мазуров В.Д.
О периодических группах с конечной нетривиальной силовской 2-подгруппой
Труды Института математики и механики УрО РАН (Trudy Instituta Matematiki i Mekhaniki UrO RAN). 2023. Т.29. №4. С.146-154. DOI: 10.21538/0134-4889-2023-29-4-146-154 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: May 5, 2023
Accepted: Jun 26, 2023
Published print: Dec 27, 2023
Published online: Feb 12, 2024
Identifiers:
Web of science: WOS:001163182700014
Scopus: 2-s2.0-85185302843
Elibrary: 65548169
OpenAlex: W4391740567
Citing: Пока нет цитирований
Altmetrics: