On a formation of singularities of solutions to soliton equations represented by L,A,B-triples Научная публикация
Журнал |
Acta Mathematica Sinica, English Series
ISSN: 1439-8516 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 40, Номер: 1, Страницы: 406-416 Страниц : 11 DOI: 10.1007/s10114-024-2324-x | ||||
Ключевые слова | Soliton equation, blow up, Davey–Stewartson equation, Moutard transformation | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 19-11-00044 |
Реферат:
We discuss the mechanism of formation of singularities of solutions to the Novikov–Veselov, modified Novikov–Veselov, and Davey–Stewartson II (DSII) equations obtained by the Moutard type transformations. These equations admit the L, A, B-triple presentation, the generalization of the L, A-pairs for 2+1-soliton equations. We relate the blow-up of solutions to the non-conservation of the zero level of discrete spectrum of the L-operator. We also present a class of exact solutions, of the DSII system, which depend on two functional parameters, and show that all possible singularities of solutions to DSII equation obtained by the Moutard transformation are indeterminancies, i.e., points when approaching which in different spatial directions the solution has different limits.
Библиографическая ссылка:
Taimanov I.A.
On a formation of singularities of solutions to soliton equations represented by L,A,B-triples
Acta Mathematica Sinica, English Series. 2024. V.40. N1. P.406-416. DOI: 10.1007/s10114-024-2324-x WOS Scopus РИНЦ OpenAlex
On a formation of singularities of solutions to soliton equations represented by L,A,B-triples
Acta Mathematica Sinica, English Series. 2024. V.40. N1. P.406-416. DOI: 10.1007/s10114-024-2324-x WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 27 мая 2022 г. |
Принята к публикации: | 12 янв. 2023 г. |
Опубликована online: | 5 янв. 2024 г. |
Опубликована в печати: | 30 янв. 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001136210300006 |
Scopus: | 2-s2.0-85181530848 |
РИНЦ: | 65969013 |
OpenAlex: | W4390599581 |
Цитирование в БД:
Пока нет цитирований