Multivalued groups and Newton polyhedron Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2023, Volume: 20, Number: 2, Pages: 1590-1596 Pages count : 7 DOI: 10.33048/semi.2023.20.097 | ||||||
Tags | multi-set, multivalued group, symmetric polynomial, Newton polyhedron | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
Abstract:
On the set of complex number C it is possible to de ne n-valued group for any positive integer n. The n-multiplication de nes a symmetric polynomial pn = pn(x,y,z) with integer coefcients. By the theorem on symmetric polynomials, one can present pn as polynomial in elementary symmetric polynomials e1, e2, e3. V. M. Buchstaber formulated a question on description coe cients of this polynomial. Also, he formulated the next question: How to describe the Newton polyhedron of pn? In the present paper we nd all coe cients of pn under monomials of the form ei 1ej 2 and prove that the Newton polyhedron of pn is a right triangle.
Cite:
Bardakov V.G.
, Kozlovskaya T.A.
Multivalued groups and Newton polyhedron
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.1590-1596. DOI: 10.33048/semi.2023.20.097 WOS Scopus РИНЦ
Multivalued groups and Newton polyhedron
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.1590-1596. DOI: 10.33048/semi.2023.20.097 WOS Scopus РИНЦ
Dates:
Submitted: | Sep 27, 2023 |
Published print: | Dec 29, 2023 |
Published online: | Dec 29, 2023 |
Identifiers:
Web of science: | WOS:001164415800019 |
Scopus: | 2-s2.0-85186930038 |
Elibrary: | 82134680 |
Citing:
Пока нет цитирований