Sciact
  • EN
  • RU

Multivalued groups and Newton polyhedron Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 1590-1596 Pages count : 7 DOI: 10.33048/semi.2023.20.097
Tags multi-set, multivalued group, symmetric polynomial, Newton polyhedron
Authors Bardakov V.G. 1,2 , Kozlovskaya T.A. 3
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State Agrarian University
3 Regional Scientific and Educational Mathematical Center of Tomsk State University,

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0009

Abstract: On the set of complex number C it is possible to de ne n-valued group for any positive integer n. The n-multiplication de nes a symmetric polynomial pn = pn(x,y,z) with integer coefcients. By the theorem on symmetric polynomials, one can present pn as polynomial in elementary symmetric polynomials e1, e2, e3. V. M. Buchstaber formulated a question on description coe cients of this polynomial. Also, he formulated the next question: How to describe the Newton polyhedron of pn? In the present paper we nd all coe cients of pn under monomials of the form ei 1ej 2 and prove that the Newton polyhedron of pn is a right triangle.
Cite: Bardakov V.G. , Kozlovskaya T.A.
Multivalued groups and Newton polyhedron
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.1590-1596. DOI: 10.33048/semi.2023.20.097 WOS Scopus РИНЦ
Dates:
Submitted: Sep 27, 2023
Published print: Dec 29, 2023
Published online: Dec 29, 2023
Identifiers:
Web of science: WOS:001164415800019
Scopus: 2-s2.0-85186930038
Elibrary: 82134680
Citing: Пока нет цитирований
Altmetrics: