Sciact
  • EN
  • RU

On Periodic Solutions of One Second-Order Differential Equation Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2024, Volume: 278, Number: 2, Pages: 314-327 Pages count : 14 DOI: 10.1007/s10958-024-06922-7
Tags second-order differential equation, periodic solution, inverted pendulum, asymptotical stability.
Authors Demidenko G.V. 1 , Dulepova A.V. 2
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

Funding (1)

1 Russian Foundation for Basic Research 18-29-10086

Abstract: In this paper, we investigate the motion of an inverted pendulum, the suspension point of which performs high-frequency oscillations along a line making a small angle with the vertical. We prove that under certain conditions on the function describing the oscillations of the suspension point of the pendulum, a periodic motion of the pendulum arises, and it is asymptotically stable.
Cite: Demidenko G.V. , Dulepova A.V.
On Periodic Solutions of One Second-Order Differential Equation
Journal of Mathematical Sciences (United States). 2024. V.278. N2. P.314-327. DOI: 10.1007/s10958-024-06922-7 Scopus РИНЦ OpenAlex
Dates:
Submitted: Sep 26, 2021
Published print: Jan 15, 2024
Published online: Jan 15, 2024
Identifiers:
Scopus: 2-s2.0-85182487980
Elibrary: 65857315
OpenAlex: W4390863126
Citing: Пока нет цитирований
Altmetrics: