On Periodic Solutions of One Second-Order Differential Equation Full article
Journal |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 278, Number: 2, Pages: 314-327 Pages count : 14 DOI: 10.1007/s10958-024-06922-7 | ||||
Tags | second-order differential equation, periodic solution, inverted pendulum, asymptotical stability. | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Foundation for Basic Research | 18-29-10086 |
Abstract:
In this paper, we investigate the motion of an inverted pendulum, the suspension point of which performs high-frequency oscillations along a line making a small angle with the vertical. We prove that under certain conditions on the function describing the oscillations of the suspension point of the pendulum, a periodic motion of the pendulum arises, and it is asymptotically stable.
Cite:
Demidenko G.V.
, Dulepova A.V.
On Periodic Solutions of One Second-Order Differential Equation
Journal of Mathematical Sciences (United States). 2024. V.278. N2. P.314-327. DOI: 10.1007/s10958-024-06922-7 Scopus РИНЦ OpenAlex
On Periodic Solutions of One Second-Order Differential Equation
Journal of Mathematical Sciences (United States). 2024. V.278. N2. P.314-327. DOI: 10.1007/s10958-024-06922-7 Scopus РИНЦ OpenAlex
Dates:
Submitted: | Sep 26, 2021 |
Published print: | Jan 15, 2024 |
Published online: | Jan 15, 2024 |
Identifiers:
Scopus: | 2-s2.0-85182487980 |
Elibrary: | 65857315 |
OpenAlex: | W4390863126 |
Citing:
Пока нет цитирований