Sciact
  • EN
  • RU

To the theory of q-ary Steiner and other-type trades Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2016, Volume: 339, Number: 3, Pages: 1150-1157 Pages count : 8 DOI: 10.1016/j.disc.2015.11.002
Tags Bitrades, Trades, Steiner systems, Subspace designs
Authors Krotov D.S. 1,2 , Mogilnykh I.Yu. 1,2 , Potapov V.N. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk 630090, Russia
2 Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia

Abstract: We introduce the concept of a clique bitrade, which generalizes several known types of bitrades, including latin bitrades, Steiner T(k-1,k,v) bitrades, extended 1-perfect bitrades. For a distance-regular graph, we show a one-to-one correspondence between the clique bitrades that meet the weight-distribution lower bound on the cardinality and the bipartite isometric subgraphs that are distance-regular with certain parameters. As an application of the results, we find the minimum cardinality of -ary Steiner T_q(k-1,k,v) bitrades and show a connection of minimum such bitrades with dual polar subgraphs of the Grassmann graph J_q(v,k).
Cite: Krotov D.S. , Mogilnykh I.Y. , Potapov V.N.
To the theory of q-ary Steiner and other-type trades
Discrete Mathematics. 2016. V.339. N3. P.1150-1157. DOI: 10.1016/j.disc.2015.11.002 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jan 14, 2015
Accepted: Nov 2, 2015
Published online: Nov 28, 2015
Identifiers:
Web of science: WOS:000369564000007
Scopus: 2-s2.0-84948425321
Elibrary: 25166629
OpenAlex: W1928275009
Citing:
DB Citing
Web of science 28
Scopus 29
OpenAlex 33
Altmetrics: