To the theory of q-ary Steiner and other-type trades Научная публикация
Журнал |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2016, Том: 339, Номер: 3, Страницы: 1150-1157 Страниц : 8 DOI: 10.1016/j.disc.2015.11.002 | ||||
Ключевые слова | Bitrades, Trades, Steiner systems, Subspace designs | ||||
Авторы |
|
||||
Организации |
|
Реферат:
We introduce the concept of a clique bitrade, which generalizes several known types of bitrades, including latin bitrades, Steiner T(k-1,k,v) bitrades, extended 1-perfect bitrades. For a distance-regular graph, we show a one-to-one correspondence between the clique bitrades that meet the weight-distribution lower bound on the cardinality and the bipartite isometric subgraphs that are distance-regular with certain parameters. As an application of the results, we find the minimum cardinality of -ary Steiner T_q(k-1,k,v) bitrades and show a connection of minimum such bitrades with dual polar subgraphs of the Grassmann graph J_q(v,k).
Библиографическая ссылка:
Krotov D.S.
, Mogilnykh I.Y.
, Potapov V.N.
To the theory of q-ary Steiner and other-type trades
Discrete Mathematics. 2016. V.339. N3. P.1150-1157. DOI: 10.1016/j.disc.2015.11.002 WOS Scopus РИНЦ OpenAlex
To the theory of q-ary Steiner and other-type trades
Discrete Mathematics. 2016. V.339. N3. P.1150-1157. DOI: 10.1016/j.disc.2015.11.002 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 14 янв. 2015 г. |
Принята к публикации: | 2 нояб. 2015 г. |
Опубликована online: | 28 нояб. 2015 г. |
Идентификаторы БД:
Web of science: | WOS:000369564000007 |
Scopus: | 2-s2.0-84948425321 |
РИНЦ: | 25166629 |
OpenAlex: | W1928275009 |