Sciact
  • EN
  • RU

Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model) Тезисы доклада

Конференция Advances in Applications of Analytical Methods for Solving Differential Equations (Symmetry 2024)
22-26 янв. 2024 , Таиланд
Сборник Advances in Applications of Analytical Methods for Solving Differentail Equations (Symmetry 2024) : Book of abstracts
Сборник, 2024.
Вых. Данные Год: 2024, Страницы: 77 Страниц : 1
Авторы Ткачев Дмитрий Леонидович 1 , Бибердорф Элина Арнольдовна 1
Организации
1 Sobolev Institute of Mathematics

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0008

Реферат: We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid in an infinite cylindrical channel in axisymetric perturbation class. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model . We formulate two equations that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state.
Библиографическая ссылка: Tkachev D.L. , Biberdorf É.A.
Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
В сборнике Advances in Applications of Analytical Methods for Solving Differentail Equations (Symmetry 2024) : Book of abstracts. 2024. – C.77.
Даты:
Опубликована в печати: 31 янв. 2024 г.
Опубликована online: 31 янв. 2024 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований