Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model) Тезисы доклада
Конференция |
Advances in Applications of Analytical
Methods for Solving Differential
Equations (Symmetry 2024) 22-26 янв. 2024 , Таиланд |
||
---|---|---|---|
Сборник | Advances in Applications of Analytical Methods for Solving Differentail Equations (Symmetry 2024) : Book of abstracts Сборник, 2024. |
||
Вых. Данные | Год: 2024, Страницы: 77 Страниц : 1 | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0008 |
Реферат:
We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid in an infinite cylindrical channel in axisymetric perturbation class. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model . We formulate two equations that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state.
Библиографическая ссылка:
Tkachev D.L.
, Biberdorf É.A.
Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
В сборнике Advances in Applications of Analytical Methods for Solving Differentail Equations (Symmetry 2024) : Book of abstracts. 2024. – C.77.
Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
В сборнике Advances in Applications of Analytical Methods for Solving Differentail Equations (Symmetry 2024) : Book of abstracts. 2024. – C.77.
Даты:
Опубликована в печати: | 31 янв. 2024 г. |
Опубликована online: | 31 янв. 2024 г. |
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований