Spectral Invariants of Graphs and Their Applications to Combinatorics Тезисы доклада
Конференция |
"Symmetries of Discrete Objects" 12-16 февр. 2024 , Auckland |
||||
---|---|---|---|---|---|
Сборник | Abstracts of the conference 'Symmetries of Discrete Objects" Сборник, 2024. |
||||
Вых. Данные | Год: 2024, Страницы: 21 Страниц : 1 | ||||
Авторы |
|
||||
Организации |
|
Реферат:
In this presentation we investigate the infinite family of circulant graphs C_n(s_1, s_2, ..., s_k). We present an explicit formula for the number of spanning trees, rooted spanning forests and the Kirchhoff index for this family of graphs. Then we investigate arithmetical and asymptotic properties of the obtained numbers. All formulas are given in terms of the Chebyshev polynomials.
Библиографическая ссылка:
Mednykh A.D.
Spectral Invariants of Graphs and Their Applications to Combinatorics
В сборнике Abstracts of the conference 'Symmetries of Discrete Objects". 2024. – C.21.
Spectral Invariants of Graphs and Their Applications to Combinatorics
В сборнике Abstracts of the conference 'Symmetries of Discrete Objects". 2024. – C.21.
Даты:
Опубликована в печати: | 15 февр. 2024 г. |
Опубликована online: | 15 февр. 2024 г. |
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований