Identification of a Mathematical Model of Economic Development of Two Regions of the World Full article
Journal |
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics)
ISSN: 1997-7670 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2024, Volume: 47, Pages: 12-30 Pages count : 19 DOI: 10.26516/1997-7670.2024.47.12 | ||||||||
Tags | mathematical model, system of ordinary differential equations, population, economic development, inverse problem, direct problem | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (1)
1 | Министерство науки и высшего образования РФ | 075-15-2021-947 |
Abstract:
This paper is devoted to solving the inverse problem (determining the parameters of a system of ordinary differential equations based on additional information determined at discrete points in time) and analyzing its solution for a mathematical model describing the dynamics of changes in the population and capital of two regions of the world. The inverse problem is reduced to the problem of minimizing the target functional and is solved by the method of differential evolution. A numerical method for solving direct and inverse problems is implemented. The developed method was tested on model and real data for countries such as Russia, China, India and the USA.
Cite:
Bezgachev M.V.
, Shishlenin M.A.
, Sokolov A.V.
Identification of a Mathematical Model of Economic Development of Two Regions of the World
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2024. V.47. P.12-30. DOI: 10.26516/1997-7670.2024.47.12 WOS Scopus РИНЦ OpenAlex
Identification of a Mathematical Model of Economic Development of Two Regions of the World
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2024. V.47. P.12-30. DOI: 10.26516/1997-7670.2024.47.12 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Oct 14, 2023 |
Accepted: | Dec 11, 2023 |
Published print: | Mar 5, 2024 |
Published online: | Mar 5, 2024 |
Identifiers:
Web of science: | WOS:001179578400003 |
Scopus: | 2-s2.0-85187721524 |
Elibrary: | 61168663 |
OpenAlex: | W4392398444 |
Citing:
Пока нет цитирований