Sciact
  • EN
  • RU

Identification of a Mathematical Model of Economic Development of Two Regions of the World Научная публикация

Журнал Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics)
ISSN: 1997-7670
Вых. Данные Год: 2024, Том: 47, Страницы: 12-30 Страниц : 19 DOI: 10.26516/1997-7670.2024.47.12
Ключевые слова mathematical model, system of ordinary differential equations, population, economic development, inverse problem, direct problem
Авторы Bezgachev M.V. 1,2,4 , Shishlenin M.A. 1,2,4 , Sokolov A.V. 3,4
Организации
1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS
2 Sobolev Institute of Mathematics SB RAS
3 Institute of Economics and Industrial Production Organization SB RAS
4 Novosibirsk State University

Информация о финансировании (1)

1 Министерство науки и высшего образования РФ 075-15-2021-947

Реферат: This paper is devoted to solving the inverse problem (determining the parameters of a system of ordinary differential equations based on additional information determined at discrete points in time) and analyzing its solution for a mathematical model describing the dynamics of changes in the population and capital of two regions of the world. The inverse problem is reduced to the problem of minimizing the target functional and is solved by the method of differential evolution. A numerical method for solving direct and inverse problems is implemented. The developed method was tested on model and real data for countries such as Russia, China, India and the USA.
Библиографическая ссылка: Bezgachev M.V. , Shishlenin M.A. , Sokolov A.V.
Identification of a Mathematical Model of Economic Development of Two Regions of the World
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2024. V.47. P.12-30. DOI: 10.26516/1997-7670.2024.47.12 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 14 окт. 2023 г.
Принята к публикации: 11 дек. 2023 г.
Опубликована в печати: 5 мар. 2024 г.
Опубликована online: 5 мар. 2024 г.
Идентификаторы БД:
Web of science: WOS:001179578400003
Scopus: 2-s2.0-85187721524
РИНЦ: 61168663
OpenAlex: W4392398444
Цитирование в БД: Пока нет цитирований
Альметрики: