Sciact
  • EN
  • RU

Numerical analysis of the kinetic equation describing isotropic 4-wave interactions in non-linear physical systems Научная публикация

Журнал Communications in Nonlinear Science and Numerical Simulation
ISSN: 1007-5704
Вых. Данные Год: 2024, Том: 133, Номер статьи : 107957, Страниц : 19 DOI: 10.1016/j.cnsns.2024.107957
Ключевые слова Kinetic equation, Wave turbulence, Cauchy problem, Rational approximations, Collocation method, Relaxation method, Cubature formula, Random fiber lasers, Bose gas, Inverse cascade of particles
Авторы Semisalov B.V. 1,2,3 , Medvedev S.B. 2 , Nazarenko S.V. 4 , Fedoruk M.P. 2,3
Организации
1 Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russia
2 Novosibirsk State University, Novosibirsk 630090, Russia
3 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
4 Insitute de Physique de Nice, Universite Côte D’Azur, Ave. Joseph Vallot, Nice 06100, France

Информация о финансировании (1)

1 Российский научный фонд 22-11-00287

Реферат: We develop a numerical method for solving kinetic equations (KEs) that describe out-ofequilibrium isotropic nonlinear four-wave interactions in optics, deep-water wave theory, physics of superfluids and Bose gases, and in other applications. High complexity of studying numerically the wave kinetics in these applications is related with the multi-scale nature of turbulence and with power-law behaviour of turbulent spectra in the Fourier space. When solving the Cauchy problem for KE, this leads to emergence of spectra with extremely steep gradients and to occurrence of singular points in the collision integral standing in the righthand side. To solve these problems, we develop special fast-convergent cubature formulas, highly-accurate rational approximations of the KE solution, and a new stable method for time marching. We apply the developed methods for solving the test problems of integration arisen from applications, for studying the wave kinetics in random fiber lasers and for analysing the Bose–Einstein condensation. In these applications we used KEs obtained from the Ginzburg–Landau and from the Gross–Pitaevskii equations.
Библиографическая ссылка: Semisalov B.V. , Medvedev S.B. , Nazarenko S.V. , Fedoruk M.P.
Numerical analysis of the kinetic equation describing isotropic 4-wave interactions in non-linear physical systems
Communications in Nonlinear Science and Numerical Simulation. 2024. V.133. 107957 :1-19. DOI: 10.1016/j.cnsns.2024.107957 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 31 окт. 2023 г.
Принята к публикации: 5 мар. 2024 г.
Опубликована online: 6 мар. 2024 г.
Опубликована в печати: 15 мар. 2024 г.
Идентификаторы БД:
Web of science: WOS:001207736600001
Scopus: 2-s2.0-85187792910
РИНЦ: 66870034
OpenAlex: W4392519907
Цитирование в БД:
БД Цитирований
OpenAlex 3
Scopus 4
Web of science 3
Альметрики: