Sciact
  • EN
  • RU

On Pre-Novikov Algebras and Derived Zinbiel Variety Научная публикация

Журнал Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
ISSN: 1815-0659
Вых. Данные Год: 2024, Том: 20, Номер статьи : 017, Страниц : 15 DOI: 10.3842/sigma.2024.017
Ключевые слова Novikov algebra; derivation; dendriform algebra; Zinbiel algebra
Авторы Kolesnikov Pavel 1 , Mashurov Farukh 2 , Sartayev Bauyrzhan 3,4
Организации
1 Sobolev Institute of Mathematics
2 Shenzhen International Center for Mathematics (SICM), Southern University of Science and Technology
3 Narxoz University
4 United Arab Emirates University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0002

Реферат: For a non-associative algebra A with a derivation d, its derived algebra A(d) is the same space equipped with new operations a ≻ b = d(a)b, a ≺ b = ad(b), a,b ∈ A. Given a variety Var of algebras, its derived variety is generated by all derived algebras A(d) for all A in Var and for all derivations d of A. The same terminology is applied to binary operads governing varieties of non-associative algebras. For example, the operad of Novikov algebras is the derived one for the operad of (associative) commutative algebras. We state a sufficient condition for every algebra from a derived variety to be embeddable into an appropriate differential algebra of the corresponding variety. We also find that for Var = Zinb, the variety of Zinbiel algebras, there exist algebras from the derived variety (which coincides with the class of pre-Novikov algebras) that cannot be embedded into a Zinbiel algebra with a derivation.
Библиографическая ссылка: Kolesnikov P. , Mashurov F. , Sartayev B.
On Pre-Novikov Algebras and Derived Zinbiel Variety
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). 2024. V.20. 017 :1-15. DOI: 10.3842/sigma.2024.017 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 31 авг. 2023 г.
Опубликована online: 28 февр. 2024 г.
Опубликована в печати: 1 апр. 2024 г.
Идентификаторы БД:
Web of science: WOS:001177272600001
Scopus: 2-s2.0-85186423629
РИНЦ: 66209073
OpenAlex: W4392238341
Цитирование в БД:
БД Цитирований
Web of science 1
Scopus 1
Альметрики: