Sciact
  • EN
  • RU

Light 3-Paths in 3-Polytopes without Adjacent Triangles Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2024, Том: 65, Номер: 2, Страницы: 257-264 Страниц : 8 DOI: 10.1134/S0037446624020022
Ключевые слова plane graph, 3-polytope, sparse polytope, structural property, 3-path, weight
Авторы Borodin O.V. 1 , Ivanova A.O. 2
Организации
1 Sobolev Institute of Mathematics
2 Ammosov North-Eastern Federal University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: Let wk be the maximum of the minimum degree-sum (weight) of vertices in k-vertex paths (k-paths) in 3-polytopes. Trivially, each 3-polytope has a vertex of degree at most 5, and so w1 ≤ 5. Back in 1955, Kotzig proved that w2 ≤ 13 (so there is an edge of weight at most 13), which is sharp. In 1993, Ando, Iwasaki, and Kaneko proved that w3 ≤ 21, which is also sharp due to a construction by Jendrol’ of 1997. In 1997, Borodin refined this by proving that w3 ≤ 18 for 3-polytopes with w2 ≥ 7, while w3 ≤ 17 holds for 3-polytopes with w2 ≥ 8, where the sharpness of 18 was confirmed by Borodin et al. in 2013, and that of 17 was known long ago. Over the last three decades, much research has been devoted to structural and coloring problems on the plane graphs that are sparse in this or that sense. In this paper we deal with 3-polytopes without adjacent 3-cycles that is without chordal 4-cycle (in other words, without K4 − e). It is known that such 3-polytopes satisfy w1 ≤ 4; and, moreover, w2 ≤ 9 holds, where both bounds are sharp (Borodin, 1992). We prove now that each 3-polytope without chordal 4-cycles has a 3-path of weight at most 15; and so w3 ≤ 15, which is sharp.
Библиографическая ссылка: Borodin O.V. , Ivanova A.O.
Light 3-Paths in 3-Polytopes without Adjacent Triangles
Siberian Mathematical Journal. 2024. V.65. N2. P.257-264. DOI: 10.1134/S0037446624020022 WOS Scopus РИНЦ РИНЦ OpenAlex
Оригинальная: Бородин О.В. , Иванова А.О.
Легкие 3-цепи в 3-многогранниках без смежных 3-граней
Сибирский математический журнал. 2024. Т.65. №2. С.249-257. DOI: 10.33048/smzh.2024.65.202 РИНЦ
Даты:
Поступила в редакцию: 17 окт. 2023 г.
Принята к публикации: 28 нояб. 2023 г.
Опубликована в печати: 25 мар. 2024 г.
Опубликована online: 25 мар. 2024 г.
Идентификаторы БД:
Web of science: WOS:001256062900002
Scopus: 2-s2.0-85188547892
РИНЦ: 66532350 | 67308244
OpenAlex: W4393167112
Цитирование в БД: Пока нет цитирований
Альметрики: