Sciact
  • EN
  • RU

Novikov Z2-Graded Algebras with an Associative 0-Component Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 2, Pages: 426-440 Pages count : 15 DOI: 10.1134/s0037446624020150
Tags associative algebra, Lie algebra, Novikov algebra, PI-algebra, automorphism group
Authors Panasenko A.S. 1 , Zhelyabin V.N. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0002

Abstract: In 1974 Kharchenko proved that if a 0-component of an n-graded associative algebra is PI then this algebra is PI. In the Novikov algebras of characteristic 0 the existence of a polynomial identity is equivalent to the solvability of the commutator ideal. We study a Z2-graded Novikov algebra N = A+M and prove that if the characteristic of the basic field is not 2 or 3 and its 0-component A is associative or Lie-nilpotent of index 3 then the commutator ideal [N,N] issolvable.
Cite: Panasenko A.S. , Zhelyabin V.N.
Novikov Z2-Graded Algebras with an Associative 0-Component
Siberian Mathematical Journal. 2024. V.65. N2. P.426-440. DOI: 10.1134/s0037446624020150 WOS Scopus РИНЦ РИНЦ OpenAlex
Dates:
Submitted: Dec 5, 2023
Accepted: Jan 28, 2024
Published print: Mar 25, 2024
Published online: Mar 25, 2024
Identifiers:
Web of science: WOS:001256062900016
Scopus: 2-s2.0-85188503823
Elibrary: 66775058 | 67308257
OpenAlex: W4393167935
Citing:
DB Citing
OpenAlex 1
Scopus 1
Elibrary 1
Web of science 1
Altmetrics: