An exact borderline between the NP-hard and polynomial-time solvable cases of flow shop scheduling with job-dependent storage requirements Научная публикация
Журнал |
Journal of Combinatorial Optimization
ISSN: 1382-6905 , E-ISSN: 1573-2886 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 47, Номер: 3, Номер статьи : 45, Страниц : 15 DOI: 10.1007/s10878-024-01121-1 | ||||
Ключевые слова | Flow shop · Job-dependent storage requirement · Computational complexity · Polynomial time algorithm | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0019 |
Реферат:
We consider two versions of two-machine flow shop scheduling problems, where each job requires an additional resource from the start of its first operation till the end of its second operation. We refer to this resource as storage space. The storage requirement of each job is determined by the processing time of its first operation. The two problems differ from each other in the way resources are allocated for each job. In the first case, the job captures all the necessary units of storage space at the beginning of processing its first operation. In the second case, the job takes up storage space gradually as its first operation is performed. In both problems, the goal is to minimize the makespan. In our paper, we establish the exact borderline between the NP-hard and polynomialtime solvable instances of the problems with respect to the ratio between the storage size and the maximum operation length.
Библиографическая ссылка:
Kononov A.
, Pakulich M.
An exact borderline between the NP-hard and polynomial-time solvable cases of flow shop scheduling with job-dependent storage requirements
Journal of Combinatorial Optimization. 2024. V.47. N3. 45 :1-15. DOI: 10.1007/s10878-024-01121-1 WOS Scopus РИНЦ OpenAlex
An exact borderline between the NP-hard and polynomial-time solvable cases of flow shop scheduling with job-dependent storage requirements
Journal of Combinatorial Optimization. 2024. V.47. N3. 45 :1-15. DOI: 10.1007/s10878-024-01121-1 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 17 янв. 2023 г. |
Принята к публикации: | 6 мар. 2024 г. |
Опубликована в печати: | 4 апр. 2024 г. |
Опубликована online: | 4 апр. 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001197455900001 |
Scopus: | 2-s2.0-85189454766 |
РИНЦ: | 66952113 |
OpenAlex: | W4393928631 |
Цитирование в БД:
Пока нет цитирований