Encoder neural network in 2D acoustic tomography Научная публикация
Журнал |
Applied and Computational Mathematics
ISSN: 1683-3511 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 23, Номер: 1, Страницы: 83-98 Страниц : 16 DOI: 10.30546/1683-6154.23.1.2024.83 | ||||||
Ключевые слова | Acoustic Tomography, Ultrasound, Deep Learning, Neural Networks, Coefficient Inverse Problem. | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 19-11-00154 |
Реферат:
We investigate deep learning approach in 2D dynamic ultrasound acoustic tomography. The mathematical model of acoustic tomography is described by a first-order hyperbolic system PDE and is based on conservation laws. This model guarantees us that the training sets of dynamic data are close to the physical solution. We train a neural network consisting of an encoder and a decoder with this data (they contain only one inclusion) and associate the data with a velocity coefficient. Numerical results show that we recover not only single inclusions, but also homogeneities consisting of two inclusions.
Библиографическая ссылка:
Prikhodko A.Y.
, Shishlenin M.A.
, Novikov N.S.
, Klyuchinskiy D.V.
Encoder neural network in 2D acoustic tomography
Applied and Computational Mathematics. 2024. Т.23. №1. С.83-98. DOI: 10.30546/1683-6154.23.1.2024.83 WOS Scopus РИНЦ OpenAlex
Encoder neural network in 2D acoustic tomography
Applied and Computational Mathematics. 2024. Т.23. №1. С.83-98. DOI: 10.30546/1683-6154.23.1.2024.83 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована в печати: | 15 апр. 2024 г. |
Опубликована online: | 15 апр. 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001195457700003 |
Scopus: | 2-s2.0-85187486568 |
РИНЦ: | 66215788 |
OpenAlex: | W4392395418 |