Sciact
  • EN
  • RU

On a Scenario of Transition to Turbulence for a Polymer Fluid Flow in a Circular Pipe Full article

Journal Mathematical Models and Computer Simulations
ISSN: 2070-0482 , E-ISSN: 2070-0490
Output data Year: 2024, Volume: 16, Number: 2, Pages: 197-207 Pages count : 11 DOI: 10.1134/s2070048224020145
Tags polymer fluid, mesoscopic model, Poiseuille-type flow, exact solution, stabilization of nonstationary flow, laminar-turbulent transition, singular point of solution
Authors Semisalov B.V. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: Equations describing nonstationary and stationary flows of an incompressible polymer fluid through a pipe are derived based on the rheological mesoscopic Pokrovskii–Vinogradov model. Their exact stationary solutions are obtained and conditions providing their existence are outlined. Numerical simulation of the stabilization of a nonstationary flow is carried out and the restrictions on the values of parameters that ensure stabilization are computed. In a number of cases these restrictions coincide with the conditions of the existence of stationary solutions. The obtained results enable us to describe constructively the process of destruction of laminar Poiseuille-type flows, which usually initiates the onset of turbulence. The key role in mechanics of this process is played by the size and orientation of macromolecules of the polymer fluid. The mathematical description of the process uses essentially the solutions’ singular points.
Cite: Semisalov B.V.
On a Scenario of Transition to Turbulence for a Polymer Fluid Flow in a Circular Pipe
Mathematical Models and Computer Simulations. 2024. V.16. N2. P.197-207. DOI: 10.1134/s2070048224020145 Scopus РИНЦ OpenAlex
Original: Семисалов Б.В.
Об одном сценарии перехода к турбулентности при течении полимерной жидкости в цилиндрическом канале
Математическое моделирование. 2023. Т.35. №11. С.62-78. DOI: 10.20948/mm-2023-11-05 РИНЦ MathNet OpenAlex
Dates:
Submitted: Jan 13, 2023
Accepted: Jun 26, 2023
Published print: Apr 24, 2024
Published online: Apr 24, 2024
Identifiers:
Scopus: 2-s2.0-85191193363
Elibrary: 66854386
OpenAlex: W4395025944
Citing:
DB Citing
Scopus 1
OpenAlex 1
Altmetrics: