Sciact
  • EN
  • RU

A stability estimate for a solution to an inverse problem for a nonlinear hyperbolic equation Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 3, Pages: 611-626 Pages count : 16 DOI: 10.1134/S0037446624030108
Tags nonlinear wave equation, structure of a solution, inverse problem, integral geometry, stability estimate
Authors Romanov V.G. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We consider a hyperbolic equation with variable leading part and nonlinearity in the lowerorder term. The coefficients of the equation are smooth functions constant beyond some compact domain in the three-dimensional space. A plane wave with direction falls to the heterogeneity from the exterior of this domain. A solution to the corresponding Cauchy problem for the original equation is measured at boundary points of the domain for a time interval including the moment of arrival of the wave at these points. The unit vector is assumed to be a parameter of the problem and can run through all possible values sequentially. We study the inverse problem of determining the coefficient of the nonlinearity on using this information about solutions. We describe the structure of a solution to the direct problem and demonstrate that the inverse problem reduces to an integral geometry problem. The latter problem consists of constructing the desired function on using given integrals of the product of this function and a weight function. The integrals are taken along the geodesic lines of the Riemannian metric associated with the leading part of the differential equation. We analyze this new problem and find some stability estimate for its solution, which yields a stability estimate for solutions to the inverse problem.
Cite: Romanov V.G.
A stability estimate for a solution to an inverse problem for a nonlinear hyperbolic equation
Siberian Mathematical Journal. 2024. V.65. N3. P.611-626. DOI: 10.1134/S0037446624030108 WOS Scopus РИНЦ OpenAlex
Original: Романов В.Г.
Оценка устойчивости решения обратной задачи для нелинейного гиперболического уравнения
Сибирский математический журнал. 2024. Т.65. №3. С.560-576. DOI: 10.33048/smzh.2024.65.310 РИНЦ
Dates:
Submitted: Jan 26, 2024
Accepted: Apr 8, 2024
Published print: May 29, 2024
Published online: May 29, 2024
Identifiers:
Web of science: WOS:001235366000010
Scopus: 2-s2.0-85195134079
Elibrary: 67311447
OpenAlex: W4399142262
Citing:
DB Citing
OpenAlex 2
Scopus 3
Elibrary 2
Web of science 2
Altmetrics: