Diffusion Approximation for Symmetric Birth-and-Death Processes with Polynomial Rates Научная публикация
| Журнал |
Markov Processes and Related Fields
ISSN: 1024-2953 |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2023, Том: 29, Номер: 4, Страницы: 605-618 Страниц : 14 DOI: 10.61102/1024-2953-mprf.2023.29.4.007 | ||||||||||
| Ключевые слова | birth-death processes, stochastic differential equations, diffusion approximation | ||||||||||
| Авторы |
|
||||||||||
| Организации |
|
Информация о финансировании (1)
| 1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0010 |
Реферат:
The symmetric birth and death stochastic process on the non-negative integers x Z+ with polynomial rates x [12] x= 0, is studied. The process moves slowly and spends more time in the neighborhood of the state 0. We prove the convergence of the scaled process to a solution of stochastic di erential equation without drift. Sticking phenomenon appears at the limiting process: trajectories, starting from any state, take nite time to reach 0 and remain there inde nitely
Библиографическая ссылка:
Logachov A.
, Logachova O.
, Pechersky E.
, Presman E.
, Yambartsev A.
Diffusion Approximation for Symmetric Birth-and-Death Processes with Polynomial Rates
Markov Processes and Related Fields. 2023. V.29. N4. P.605-618. DOI: 10.61102/1024-2953-mprf.2023.29.4.007 WOS Scopus РИНЦ OpenAlex
Diffusion Approximation for Symmetric Birth-and-Death Processes with Polynomial Rates
Markov Processes and Related Fields. 2023. V.29. N4. P.605-618. DOI: 10.61102/1024-2953-mprf.2023.29.4.007 WOS Scopus РИНЦ OpenAlex
Даты:
| Поступила в редакцию: | 29 окт. 2023 г. |
| Принята к публикации: | 5 дек. 2023 г. |
| Опубликована в печати: | 21 янв. 2024 г. |
| Опубликована online: | 21 янв. 2024 г. |
Идентификаторы БД:
| Web of science: | WOS:001162003800005 |
| Scopus: | 2-s2.0-85200764957 |
| РИНЦ: | 65777682 |
| OpenAlex: | W4390539140 |
Цитирование в БД:
Пока нет цитирований