One Optimization Problem Induced by the Segregation Problem for the Sum of Two Quasiperiodic Sequences Научная публикация
Конференция |
XXIII International Conference Mathematical Optimization Theory and Operations Research 30 июн. - 6 июл. 2024 , Омск |
||
---|---|---|---|
Сборник | Mathematical Optimization Theory and Operations Research : 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings Сборник, Springer Cham. Switzerland.2024. 464 c. ISBN 978-3-031-62792-7. |
||
Журнал |
Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349 |
||
Вых. Данные | Год: 2024, Том: 14766, Страницы: 127-141 Страниц : 15 DOI: 10.1007/978-3-031-62792-7_9 | ||
Ключевые слова | Discrete optimization problem · Polynomial-time solvability · Quasiperiodic sequence · Segregation · Detection · One-microphone signal separation | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0015 |
Реферат:
An unexplored discrete optimization problem of summing the elements of three given numerical sequences is considered. This problem is a core, within the framework of a posteriori approach, of the noiseproof segregation problem for two independent unobservable quasiperiodic sequences, i.e., the sequences that include some non-intersecting subsequences-fragments having the predetermined characteristic properties with the limitations from below and above on the interval between two successive fragments. The segregation problem is to restore the unobservable sequences on the base of their noisy sum. In the current paper, all the fragments in a single sequence are assumed to be identical and coinciding with the given reference fragment, at that, the information about the number of fragments in it is unavailable. It is shown constructively that, despite the exponentially-sized set of possible solutions to the optimization problem under consideration, as well as in the segregation problem, both these problems are polynomially solvable. Some numerical simulation results are given for illustration.
Библиографическая ссылка:
Mikhailova L.
One Optimization Problem Induced by the Segregation Problem for the Sum of Two Quasiperiodic Sequences
В сборнике Mathematical Optimization Theory and Operations Research : 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings. – Springer Cham., 2024. – C.127-141. – ISBN 978-3-031-62792-7. DOI: 10.1007/978-3-031-62792-7_9 Scopus OpenAlex
One Optimization Problem Induced by the Segregation Problem for the Sum of Two Quasiperiodic Sequences
В сборнике Mathematical Optimization Theory and Operations Research : 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings. – Springer Cham., 2024. – C.127-141. – ISBN 978-3-031-62792-7. DOI: 10.1007/978-3-031-62792-7_9 Scopus OpenAlex
Даты:
Поступила в редакцию: | 31 мая 2024 г. |
Опубликована в печати: | 18 июн. 2024 г. |
Опубликована online: | 18 июн. 2024 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85198416251 |
OpenAlex: | W4399743522 |
Цитирование в БД:
Пока нет цитирований