Sciact
  • EN
  • RU

Semicontinuity under Convergence of Homeomorphisms in L1oc of the Operator Distortion Function Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 4, Pages: 737-750 Pages count : 14 DOI: 10.1134/s0037446624040013
Tags lower semicontinuity, homeomorphism of class Qq,p, Carnot group
Authors Vodopyanov S.K. 1 , Sboev D.A. 1
Affiliations
1 Novosibirsk State University

Funding (1)

1 Mathematical Center in Akademgorodok 075-15-2022-282

Abstract: Studying the convergence in L1,loc of homeomorphisms of class Qq,p to some limit mapping, under additional assumptions, we prove that the norm of the operator distortion function is lower semicontinuous. We estimate the operator distortion function for q<p
Cite: Vodopyanov S.K. , Sboev D.A.
Semicontinuity under Convergence of Homeomorphisms in L1oc of the Operator Distortion Function
Siberian Mathematical Journal. 2024. V.65. N4. P.737-750. DOI: 10.1134/s0037446624040013 WOS Scopus РИНЦ OpenAlex
Original: Водопьянов С.К. , Сбоев Д.А.
Полунепрерывность операторной функции искажения при сходимости гомеоморфизмов в L1,loc
Сибирский математический журнал. 2024. Т.65. №4. С.605-621. DOI: 10.33048/smzh.2024.65.401 РИНЦ
Dates:
Submitted: Apr 18, 2024
Accepted: Jun 20, 2024
Published print: Jul 16, 2024
Published online: Jul 16, 2024
Identifiers:
Web of science: WOS:001272553600013
Scopus: 2-s2.0-85198617363
Elibrary: 68538174
OpenAlex: W4400698002
Citing:
DB Citing
OpenAlex 1
Scopus 1
Altmetrics: