Semicontinuity under Convergence of Homeomorphisms in L1oc of the Operator Distortion Function Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 65, Number: 4, Pages: 737-750 Pages count : 14 DOI: 10.1134/s0037446624040013 | ||
Tags | lower semicontinuity, homeomorphism of class Qq,p, Carnot group | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Mathematical Center in Akademgorodok | 075-15-2022-282 |
Abstract:
Studying the convergence in L1,loc of homeomorphisms of class Qq,p to some limit mapping, under additional assumptions, we prove that the norm of the operator distortion function is lower semicontinuous. We estimate the operator distortion function for q<p
Cite:
Vodopyanov S.K.
, Sboev D.A.
Semicontinuity under Convergence of Homeomorphisms in L1oc of the Operator Distortion Function
Siberian Mathematical Journal. 2024. V.65. N4. P.737-750. DOI: 10.1134/s0037446624040013 WOS Scopus РИНЦ OpenAlex
Semicontinuity under Convergence of Homeomorphisms in L1oc of the Operator Distortion Function
Siberian Mathematical Journal. 2024. V.65. N4. P.737-750. DOI: 10.1134/s0037446624040013 WOS Scopus РИНЦ OpenAlex
Original:
Водопьянов С.К.
, Сбоев Д.А.
Полунепрерывность операторной функции искажения при сходимости гомеоморфизмов в L1,loc
Сибирский математический журнал. 2024. Т.65. №4. С.605-621. DOI: 10.33048/smzh.2024.65.401 РИНЦ
Полунепрерывность операторной функции искажения при сходимости гомеоморфизмов в L1,loc
Сибирский математический журнал. 2024. Т.65. №4. С.605-621. DOI: 10.33048/smzh.2024.65.401 РИНЦ
Dates:
Submitted: | Apr 18, 2024 |
Accepted: | Jun 20, 2024 |
Published print: | Jul 16, 2024 |
Published online: | Jul 16, 2024 |
Identifiers:
Web of science: | WOS:001272553600013 |
Scopus: | 2-s2.0-85198617363 |
Elibrary: | 68538174 |
OpenAlex: | W4400698002 |