Two-dimensional discrete operators and rational functions on algebraic curves Full article
Journal |
Sao Paulo Journal of Mathematical Sciences
ISSN: 1982-6907 , E-ISSN: 2316-9028 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 18, Pages: 855–865 Pages count : 11 DOI: 10.1007/s40863-024-00455-2 | ||||
Tags | Discrete operators · Two-dimensional Schrödinger operator · Baker–Akhiezer function | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 24-11-00281 |
Abstract:
In this paper we study a connection between finite-gap on one energy level two dimensional Schrödinger operators and two-dimensional discrete operators. We find spectral data for a new class of two-dimensional integrable discrete operators. These operators have eigenfunctions on zero level energy parameterized by points of algebraic spectral curves. In the case of genus one spectral curves we show that the f inite-gap Schrödinger operators can be obtained as a limit of the discrete operators.
Cite:
Leonchik P.A.
, Mironov A.E.
Two-dimensional discrete operators and rational functions on algebraic curves
Sao Paulo Journal of Mathematical Sciences. 2024. V.18. P.855–865. DOI: 10.1007/s40863-024-00455-2 WOS Scopus РИНЦ OpenAlex
Two-dimensional discrete operators and rational functions on algebraic curves
Sao Paulo Journal of Mathematical Sciences. 2024. V.18. P.855–865. DOI: 10.1007/s40863-024-00455-2 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | May 27, 2024 |
Accepted: | Jul 9, 2024 |
Published print: | Jul 29, 2024 |
Published online: | Jul 29, 2024 |
Identifiers:
Web of science: | WOS:001280680000001 |
Scopus: | 2-s2.0-85200046359 |
Elibrary: | 69134670 |
OpenAlex: | W4401135149 |
Citing:
Пока нет цитирований