Sciact
  • EN
  • RU

Two-dimensional discrete operators and rational functions on algebraic curves Full article

Journal Sao Paulo Journal of Mathematical Sciences
ISSN: 1982-6907 , E-ISSN: 2316-9028
Output data Year: 2024, Volume: 18, Pages: 855–865 Pages count : 11 DOI: 10.1007/s40863-024-00455-2
Tags Discrete operators · Two-dimensional Schrödinger operator · Baker–Akhiezer function
Authors Leonchik Polina A. 1,2 , Mironov Andrey E. 1,2
Affiliations
1 Novosibirsk State University, Pirogova st. 1, Novosibirsk, 630090, Russia
2 Sobolev Institute of Mathematics

Funding (1)

1 Russian Science Foundation 24-11-00281

Abstract: In this paper we study a connection between finite-gap on one energy level two dimensional Schrödinger operators and two-dimensional discrete operators. We find spectral data for a new class of two-dimensional integrable discrete operators. These operators have eigenfunctions on zero level energy parameterized by points of algebraic spectral curves. In the case of genus one spectral curves we show that the f inite-gap Schrödinger operators can be obtained as a limit of the discrete operators.
Cite: Leonchik P.A. , Mironov A.E.
Two-dimensional discrete operators and rational functions on algebraic curves
Sao Paulo Journal of Mathematical Sciences. 2024. V.18. P.855–865. DOI: 10.1007/s40863-024-00455-2 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: May 27, 2024
Accepted: Jul 9, 2024
Published print: Jul 29, 2024
Published online: Jul 29, 2024
Identifiers:
Web of science: WOS:001280680000001
Scopus: 2-s2.0-85200046359
Elibrary: 69134670
OpenAlex: W4401135149
Citing: Пока нет цитирований
Altmetrics: