The Strong π-Sylow Theorem for the Groups PSL_2(q) Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 65, Number: 5, Pages: 1187–1194 Pages count : 8 DOI: 10.1134/S0037446624050173 | ||||
Tags | π-Sylow theorem, strong π-Sylow theorem, projective special linear group | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 24-21-00163 |
Abstract:
Let π be a set of primes. A finite group G is a π-group if all prime divisors of the order of G belong to π. Following Wielandt, the π-Sylow theorem holds for G if all maximal π-subgroups of G are conjugate; if the π-Sylow theorem holds for every subgroup of G then the strong π-Sylow theorem holds for G. The strong π-Sylow theorem is known to hold for G if and only if it holds for every nonabelian composition factor of G. In 1979, Wielandt asked which finite simple nonabelian groups obey the strong π-Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong π-Sylow theorem for the groups PSL2(q).
Cite:
Revin D.O.
, Shepelev V.D.
The Strong π-Sylow Theorem for the Groups PSL_2(q)
Siberian Mathematical Journal. 2024. V.65. N5. P.1187–1194. DOI: 10.1134/S0037446624050173 WOS Scopus РИНЦ OpenAlex
The Strong π-Sylow Theorem for the Groups PSL_2(q)
Siberian Mathematical Journal. 2024. V.65. N5. P.1187–1194. DOI: 10.1134/S0037446624050173 WOS Scopus РИНЦ OpenAlex
Original:
Ревин Д.О.
, Шепелев В.Д.
Сильная π-теорема Силова для групп PSL_2(q)
Сибирский математический журнал. 2024. Т.65. №5. С.1011-1021. DOI: 10.33048/smzh.2024.65.517 РИНЦ
Сильная π-теорема Силова для групп PSL_2(q)
Сибирский математический журнал. 2024. Т.65. №5. С.1011-1021. DOI: 10.33048/smzh.2024.65.517 РИНЦ
Dates:
Submitted: | Apr 10, 2024 |
Accepted: | Jun 20, 2024 |
Published print: | Sep 25, 2024 |
Published online: | Sep 25, 2024 |
Identifiers:
Web of science: | WOS:001320442300006 |
Scopus: | 2-s2.0-85204874304 |
Elibrary: | 69920893 |
OpenAlex: | W4402842401 |
Citing:
Пока нет цитирований