On combinatorial properties of Gruenberg–Kegel graphs of finite groups Full article
Journal |
Monatshefte fur Mathematik
ISSN: 0026-9255 , E-ISSN: 1436-5081 |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2024, Volume: 205, Pages: 711–723 Pages count : 13 DOI: 10.1007/s00605-024-02005-6 | ||||||||||||
Tags | Finite group · Centralizer of involution · Gruenberg–Kegel graph (prime graph) · Strongly regular graph · Complete multipartite graph | ||||||||||||
Authors |
|
||||||||||||
Affiliations |
|
Funding (2)
1 | Russian Science Foundation | 24-41-10004 |
2 | Министерство науки и высшего образования РФ | 075-02-2024-1428 |
Abstract:
If G is a finite group, then the spectrum ω(G) is the set of all element orders of G. The prime spectrum π(G) is the set of all primes belonging to ω(G). A simple graph (G) whose vertex set is π(G) and in which two distinct vertices r and s are adjacent if and only if rs ∈ ω(G) is called the Gruenberg–Kegel graph or the prime graph of G. In this paper, we prove that if G is a group of even order, then the set of vertices which are non-adjacent to 2 in (G) forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg–Kegel graph of a finite group.
Cite:
Chen M.
, Gorshkov I.
, Maslova N.V.
, Yang N.
On combinatorial properties of Gruenberg–Kegel graphs of finite groups
Monatshefte fur Mathematik. 2024. V.205. P.711–723. DOI: 10.1007/s00605-024-02005-6 WOS Scopus РИНЦ OpenAlex
On combinatorial properties of Gruenberg–Kegel graphs of finite groups
Monatshefte fur Mathematik. 2024. V.205. P.711–723. DOI: 10.1007/s00605-024-02005-6 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jan 28, 2024 |
Accepted: | Jul 18, 2024 |
Published print: | Aug 20, 2024 |
Published online: | Aug 20, 2024 |
Identifiers:
Web of science: | WOS:001294983600001 |
Scopus: | 2-s2.0-85201640280 |
Elibrary: | 73467091 |
OpenAlex: | W4401766542 |
Citing:
DB | Citing |
---|---|
Scopus | 1 |