Sciact
  • EN
  • RU

On combinatorial properties of Gruenberg–Kegel graphs of finite groups Научная публикация

Журнал Monatshefte fur Mathematik
ISSN: 0026-9255 , E-ISSN: 1436-5081
Вых. Данные Год: 2024, Том: 205, Страницы: 711–723 Страниц : 13 DOI: 10.1007/s00605-024-02005-6
Ключевые слова Finite group · Centralizer of involution · Gruenberg–Kegel graph (prime graph) · Strongly regular graph · Complete multipartite graph
Авторы Chen Mingzhu 1 , Gorshkov Ilya 2,3 , Maslova Natalia V. 4,5 , Yang Nanying 6
Организации
1 School of Mathematics and Statistics, Hainan University, Haikou, 570225, Hainan, People's Republic of China
2 Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia, 630090
3 Siberian Federal University
4 Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia, 620108
5 Ural Federal University
6 School of Science, Jiangnan University, Wuxi, 214122, People's Republic of China

Информация о финансировании (2)

1 Российский научный фонд 24-41-10004
2 Министерство науки и высшего образования РФ 075-02-2024-1428

Реферат: If G is a finite group, then the spectrum ω(G) is the set of all element orders of G. The prime spectrum π(G) is the set of all primes belonging to ω(G). A simple graph (G) whose vertex set is π(G) and in which two distinct vertices r and s are adjacent if and only if rs ∈ ω(G) is called the Gruenberg–Kegel graph or the prime graph of G. In this paper, we prove that if G is a group of even order, then the set of vertices which are non-adjacent to 2 in (G) forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg–Kegel graph of a finite group.
Библиографическая ссылка: Chen M. , Gorshkov I. , Maslova N.V. , Yang N.
On combinatorial properties of Gruenberg–Kegel graphs of finite groups
Monatshefte fur Mathematik. 2024. V.205. P.711–723. DOI: 10.1007/s00605-024-02005-6 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 28 янв. 2024 г.
Принята к публикации: 18 июл. 2024 г.
Опубликована в печати: 20 авг. 2024 г.
Опубликована online: 20 авг. 2024 г.
Идентификаторы БД:
Web of science: WOS:001294983600001
Scopus: 2-s2.0-85201640280
РИНЦ: 73467091
OpenAlex: W4401766542
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: