Sciact
  • EN
  • RU

Radon Transform on Sobolev Spaces Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2021, Том: 62, Номер: 3, Страницы: 560-580 Страниц : 21 DOI: 10.1134/S0037446621030198
Ключевые слова 517.9; Radon transform; Reshetnyak formula; Sobolev spaces
Авторы Sharafutdinov V.A. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Реферат: The Radon transform R maps a function f on Rn to the family of the integrals of f over all hyperplanes. The classicalReshetnyak formula (also called the Plancherel formula for the Radon transform) states that (Formula Presented.), where(Formula Presented.) is some special norm. The formula extends the Radon transform to the bijective Hilbert space isometry (Formula Presented.).Given reals r, s, and -n/2, we introduce the Sobolev type spaces (Formula Presented.) and prove the version of the Reshetnyak formula:(Formula Presented.).The formula extends the Radon transform to the bijective Hilbert space isometry (Formula Presented.).If (Formula Presented.) are integers then (Formula Presented.) consists of the even functions ϕ(ξ, p) with square integrable derivatives of order ≤ r with respect to ξ and order ≤ s with respect to p. © 2021, Pleiades Publishing, Ltd.
Библиографическая ссылка: Sharafutdinov V.A.
Radon Transform on Sobolev Spaces
Siberian Mathematical Journal. 2021. V.62. N3. P.560-580. DOI: 10.1134/S0037446621030198 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000655743500019
Scopus: 2-s2.0-85109939228
OpenAlex: W3168099201
Цитирование в БД:
БД Цитирований
Scopus 5
OpenAlex 7
Web of science 4
Альметрики: