Sciact
  • EN
  • RU

The Ptolemaic Characteristic of Tetrads and Quasiregular Mappings Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 5, Pages: 995-1002 Pages count : 8 DOI: 10.1134/s0037446624050021
Tags mapping with bounded distortion, quasiregular mapping, quasimeromorphic mapping, quasim¨obius mapping, multivalued mapping, Ptolemaic characteristic of tetrads
Authors Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: We consider the Ptolemaic characteristic of quadruples of disjoint nonempty compact subsets (generalized tetrads). The main theorem of this article asserts that an arbitrary multivalued mapping F from Rn onto itself such that the images of distinct points are disjoint and each of them contains at most two distinct points is the inverse of a K-quasimeromorphic mapping if and only if F admits a controllable upper bound for the distortion of the Ptolemaic characteristic of tetrads.
Cite: Aseev V.V.
The Ptolemaic Characteristic of Tetrads and Quasiregular Mappings
Siberian Mathematical Journal. 2024. V.65. N5. P.995-1002. DOI: 10.1134/s0037446624050021 WOS Scopus РИНЦ OpenAlex
Original: Асеев В.В.
Птолемеева характеристика тетрад и квазирегулярные отображения
Сибирский математический журнал. 2024. Т.65. №5. С.785-794. DOI: 10.33048/smzh.2024.65.502 РИНЦ
Dates:
Submitted: Feb 6, 2024
Accepted: Aug 20, 2024
Published print: Sep 25, 2024
Published online: Sep 25, 2024
Identifiers:
Web of science: WOS:001320442300009
Scopus: 2-s2.0-85204762923
Elibrary: 69920878
OpenAlex: W4402841962
Citing: Пока нет цитирований
Altmetrics: