Control Theory Problems and the Rashevskii–Chow Theorem on a Cartan Group Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 65, Number: 5, Pages: 1096-1111 Pages count : 16 DOI: 10.1134/s0037446624050100 | ||||
Tags | horizontal vector fields, Carnot group, Cartan group, horizontal broken line, vertex, Rashevskii–Chow theorem | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
We consider the problem of controlling the nonlinear 5-dimensional systems that are induced by horizontal vector fields X and Y which together with their commutators generate some Cartan algebra depending linearly on two piecewise constant controls. We also study the properties of solutions to the systems on interpreting a solution as a horizontal k-broken line Lk on the canonical Cartan group K, where the segments of Lk are segments of integral curves of the vector fields of the form aX +bY with a,b = const. As regards K, we prove that 4 is the minimal number NK such that every two points u,v ∈ K canbe joinedbysomeLk with k ≤ NK. Thus, we obtain the best version of the Rashevskii–Chow theorem on the Cartan group. We also show that the minimal number of segments of a closed horizontal broken line on K equals 6.
Cite:
Greshnov A.V.
, Zhukov R.I.
Control Theory Problems and the Rashevskii–Chow Theorem on a Cartan Group
Siberian Mathematical Journal. 2024. V.65. N5. P.1096-1111. DOI: 10.1134/s0037446624050100 WOS Scopus РИНЦ OpenAlex
Control Theory Problems and the Rashevskii–Chow Theorem on a Cartan Group
Siberian Mathematical Journal. 2024. V.65. N5. P.1096-1111. DOI: 10.1134/s0037446624050100 WOS Scopus РИНЦ OpenAlex
Original:
Грешнов А.В.
, Жуков Р.И.
Задачи теории управления и теорема Рашевского — Чоу на группе Картана
Сибирский математический журнал. 2024. Т.65. №5. С.901-920. DOI: 10.33048/smzh.2024.65.510 РИНЦ
Задачи теории управления и теорема Рашевского — Чоу на группе Картана
Сибирский математический журнал. 2024. Т.65. №5. С.901-920. DOI: 10.33048/smzh.2024.65.510 РИНЦ
Dates:
Submitted: | Jun 10, 2024 |
Accepted: | Aug 20, 2024 |
Published print: | Sep 25, 2024 |
Published online: | Sep 25, 2024 |
Identifiers:
Web of science: | WOS:001320442300013 |
Scopus: | 2-s2.0-85204785285 |
Elibrary: | 69920886 |
OpenAlex: | W4402843155 |
Citing:
Пока нет цитирований