Sciact
  • EN
  • RU

A Method for Separating the Matrix Spectrum by a Straight Line and an Infinite Strip Flutter Problem Full article

Journal Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662
Output data Year: 2024, Volume: 64, Number: 8, Pages: 1704-1714 Pages count : 11 DOI: 10.1134/s0965542524700891
Tags spectrum dichotomy, stability domain, flutter, discretization of differential operator, neutral curve
Authors Biberdorf E.A. 1 , Rudometova A.S. 1 , Li Wang 2 , Jumbaev A.D. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: A novel method for separating the matrix spectrum by a straight line based on a fractional linear transformation is proposed. This method has a number of advantages over the approaches based on an exponential transformation; more precisely, the range of its application is wider and the number of iterations needed for its convergence is much lower. The proposed method is used to study flutter problems for an infinite strip under various edge fastening conditions, which, after suitable discretization of differential operators, are reduced to spectral problems for linear operators. The study of stability regions by the method of spectrum dichotomy by the imaginary axis makes it possible to construct neutral curves in the plane of parameters of the flutter problem.
Cite: Biberdorf E.A. , Rudometova A.S. , Li W. , Jumbaev A.D.
A Method for Separating the Matrix Spectrum by a Straight Line and an Infinite Strip Flutter Problem
Computational Mathematics and Mathematical Physics. 2024. V.64. N8. P.1704-1714. DOI: 10.1134/s0965542524700891 WOS Scopus РИНЦ OpenAlex
Original: Бибердорф Э.А. , Рудометова А.С. , Ли В. , Жумабаев А.Д.
Метод разделения матричного спектра относительно прямой и задача о флаттере бесконечной полосы
Журнал вычислительной математики и математической физики. 2024. Т.64. №8. С.1340-1352. DOI: 10.31857/S0044466924080026 РИНЦ OpenAlex
Dates:
Submitted: Apr 2, 2024
Accepted: May 2, 2024
Published print: Sep 26, 2024
Published online: Sep 26, 2024
Identifiers:
Web of science: WOS:001324967400012
Scopus: 2-s2.0-85205368278
Elibrary: 69921017
OpenAlex: W4402883630
Citing:
DB Citing
Scopus 1
Altmetrics: