Sciact
  • EN
  • RU

Light 3-faces in 3-polytopes without adjacent triangles Научная публикация

Журнал Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Вых. Данные Год: 2025, Том: 348, Номер: 1, Номер статьи : 114299, Страниц : 4 DOI: 10.1016/j.disc.2024.114299
Ключевые слова Plane graph, 3-polytope, Sparse polytope, Structural property, 3-face, Weight
Авторы Borodin O.V. 1 , Ivanova A.O. 2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
2 Ammosov North-Eastern Federal University, Yakutsk, 677891, Russia

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017
2 Министерство науки и высшего образования РФ FSRG-2023-0025

Реферат: Over the last decades, a lot of research has been devoted to structural and coloring problems on plane graphs that are sparse in this or that sense. In this note we deal with the densest among sparse 3-polytopes, namely those having no adjacent 3-cycles. Borodin (1996) proved that such 3-polytopes have a vertex of degree at most 4 and, moreover, an edge with the degree-sum of its end-vertices at most 9, where both bounds are sharp. By d(v)denote the degree of a vertex v. An edge e =xy in a 3-polytope is an (i, j)-edge if d(x) ≤iand d(y) ≤j. The well-known (3,5;4,4)-Archimedean solid corresponds to a plane quadrangulation in which every edge joins a 3-vertex with a 5-vertex. We prove that every 3-polytope with neither adjacent 3-cycles nor (3, 5)-edges has a 3-face with the degree-sum of its incident vertices (weight) at most 16, which bound is sharp.
Библиографическая ссылка: Borodin O.V. , Ivanova A.O.
Light 3-faces in 3-polytopes without adjacent triangles
Discrete Mathematics. 2025. V.348. N1. 114299 :1-4. DOI: 10.1016/j.disc.2024.114299 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 8 дек. 2023 г.
Принята к публикации: 17 окт. 2024 г.
Опубликована в печати: 25 окт. 2024 г.
Опубликована online: 25 окт. 2024 г.
Идентификаторы БД:
Web of science: WOS:001344032900001
Scopus: 2-s2.0-85206981992
РИНЦ: 80994827
OpenAlex: W4403729798
Цитирование в БД:
БД Цитирований
OpenAlex 1
Scopus 1
Web of science 1
Альметрики: