Algebras of Binary Isolating Formulas for Strong Product Theories Full article
Journal |
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics)
ISSN: 1997-7670 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 45, Pages: 138-144 Pages count : 7 DOI: 10.26516/1997-7670.2023.45.138 | ||
Tags | algebra of binary isolating formulas, strong product, model theory, Cayley tables | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 22-21-00044 |
Abstract:
Algebras of distributions of binary isolating and semi-isolating formulas are objects that are derived for a given theory, and they specify the relations between binary formulas of the theory. These algebras are useful for classifying theories and determining which algebras correspond to which theories. In the paper, we discuss algebras of binary formulas for strong products and provide Cayley tables for these algebras. On the basis of constructed tables we formulate a theorem describing all algebras of distributions of binary formulas for the theories of strong multiplications of regular polygons on an edge. In addition, we shows that these algebras can be absorbed by simplex algebras, which simplify the study of that theory and connect it with other algebraic structures. This concept is a useful tool for understanding the relationships between binary formulas of a theory.
Cite:
Emel’yanov D.Y.
Algebras of Binary Isolating Formulas for Strong Product Theories
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2023. V.45. P.138-144. DOI: 10.26516/1997-7670.2023.45.138 WOS Scopus РИНЦ OpenAlex
Algebras of Binary Isolating Formulas for Strong Product Theories
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2023. V.45. P.138-144. DOI: 10.26516/1997-7670.2023.45.138 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Mar 22, 2023 |
Accepted: | May 30, 2023 |
Published print: | Sep 18, 2023 |
Published online: | Sep 18, 2023 |
Identifiers:
Web of science: | WOS:001071184700008 |
Scopus: | 2-s2.0-85175449759 |
Elibrary: | 54483000 |
OpenAlex: | W4386717098 |
Citing:
Пока нет цитирований