Algebras of Binary Isolating Formulas for Strong Product Theories Научная публикация
Журнал |
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics)
ISSN: 1997-7670 |
||
---|---|---|---|
Вых. Данные | Год: 2023, Том: 45, Страницы: 138-144 Страниц : 7 DOI: 10.26516/1997-7670.2023.45.138 | ||
Ключевые слова | algebra of binary isolating formulas, strong product, model theory, Cayley tables | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 22-21-00044 |
Реферат:
Algebras of distributions of binary isolating and semi-isolating formulas are objects that are derived for a given theory, and they specify the relations between binary formulas of the theory. These algebras are useful for classifying theories and determining which algebras correspond to which theories. In the paper, we discuss algebras of binary formulas for strong products and provide Cayley tables for these algebras. On the basis of constructed tables we formulate a theorem describing all algebras of distributions of binary formulas for the theories of strong multiplications of regular polygons on an edge. In addition, we shows that these algebras can be absorbed by simplex algebras, which simplify the study of that theory and connect it with other algebraic structures. This concept is a useful tool for understanding the relationships between binary formulas of a theory.
Библиографическая ссылка:
Emel’yanov D.Y.
Algebras of Binary Isolating Formulas for Strong Product Theories
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2023. V.45. P.138-144. DOI: 10.26516/1997-7670.2023.45.138 WOS Scopus РИНЦ OpenAlex
Algebras of Binary Isolating Formulas for Strong Product Theories
Известия Иркутского государственного университета. Серия: Математика (Bulletin of Irkutsk State University. Series Mathematics). 2023. V.45. P.138-144. DOI: 10.26516/1997-7670.2023.45.138 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 22 мар. 2023 г. |
Принята к публикации: | 30 мая 2023 г. |
Опубликована в печати: | 18 сент. 2023 г. |
Опубликована online: | 18 сент. 2023 г. |
Идентификаторы БД:
Web of science: | WOS:001071184700008 |
Scopus: | 2-s2.0-85175449759 |
РИНЦ: | 54483000 |
OpenAlex: | W4386717098 |
Цитирование в БД:
Пока нет цитирований