Sciact
  • EN
  • RU

Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces Full article

Journal Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605
Output data Year: 2024, Volume: 325, Pages: 280-291 Pages count : 12 DOI: 10.1134/S0081543824020160
Tags differential operators with periodic coefficients, floquet–bloch varieties, non-simply connected manifolds, schrÖdinger operator, dirac operator
Authors Taimanov I.A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We define spectral (Bloch) varieties of multidimensional differential operators on non-simply connected manifolds. In their terms we give a description of the analytic dependence of the spectra of magnetic Laplacians on non-simply connected manifolds on the values of the Aharonov–Bohm fluxes, construct analogs of spectral curves for two-dimensional Dirac operators on Riemann surfaces, and thereby find new conformal invariants of immersions of surfaces into three- and four-dimensional Euclidean spaces.
Cite: Taimanov I.A.
Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces
Proceedings of the Steklov Institute of Mathematics. 2024. V.325. P.280-291. DOI: 10.1134/S0081543824020160 WOS Scopus РИНЦ OpenAlex
Original: Тайманов И.А.
Функции Флоке-Блоха на неодносвязных многообразиях, потоки Ааронова-Бома и конформные инварианты погруженных поверхностей
Труды Математического института имени В.А. Стеклова. 2024. Т.325. С.297-308. DOI: 10.4213/tm4396 РИНЦ OpenAlex
Dates:
Submitted: Feb 4, 2024
Accepted: Mar 20, 2024
Published print: Oct 22, 2024
Published online: Oct 22, 2024
Identifiers:
Web of science: WOS:001340397900008
Scopus: 2-s2.0-85207485022
Elibrary: 73531043
OpenAlex: W4403628409
Citing: Пока нет цитирований
Altmetrics: