Sciact
  • EN
  • RU

On abelian saturated infinite words Full article

Journal Theoretical Computer Science
ISSN: 0304-3975
Output data Year: 2019, Volume: 792, Pages: 154-160 Pages count : 7 DOI: 10.1016/j.tcs.2018.05.013
Tags Abelian equivalence; Combinatorics on words; Palindrome; Rich word
Authors Avgustinovich Sergey 1 , Cassaigne Julien 2 , Karhumäki Juhani 3 , Puzynina Svetlana 4,1 , Saarela Aleksi 3
Affiliations
1 Sobolev Institute of Mathematics, Russia
2 Institut de Mathématiques de Marseille, Case 907, 13288 Marseille Cedex 9, France
3 Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
4 St. Petersburg State University, 14th Line V.O., 29B, Saint Petersburg, 199178, Russia

Abstract: Let f : Z+ → R be an increasing function. We say that an infinite word w is abelian f (n)-saturated if each factor of length n contains \Theta(f (n)) abelian nonequivalent factors. We show that binary infinite words cannot be abelian n^2-saturated, but, for any ε > 0, they can be abelian n^{2-ε}-saturated. There is also a sequence of finite words (w_n), with |w_n| = n, such that each w_n contains at least Cn^2 abelian nonequivalent factors for some constant C > 0. We also consider saturated words and their connection to palindromic richness in the case of equality and k-abelian equivalence.
Cite: Avgustinovich S. , Cassaigne J. , Karhumäki J. , Puzynina S. , Saarela A.
On abelian saturated infinite words
Theoretical Computer Science. 2019. V.792. P.154-160. DOI: 10.1016/j.tcs.2018.05.013 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jan 18, 2018
Accepted: May 10, 2018
Published print: Nov 5, 2019
Identifiers:
Web of science: WOS:000490648500012
Scopus: 2-s2.0-85047205785
Elibrary: 41782257
OpenAlex: W2803511783
Citing:
DB Citing
Elibrary 3
Scopus 3
Web of science 3
OpenAlex 4
Altmetrics: