On abelian saturated infinite words Full article
Journal |
Theoretical Computer Science
ISSN: 0304-3975 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2019, Volume: 792, Pages: 154-160 Pages count : 7 DOI: 10.1016/j.tcs.2018.05.013 | ||||||||
Tags | Abelian equivalence; Combinatorics on words; Palindrome; Rich word | ||||||||
Authors |
|
||||||||
Affiliations |
|
Abstract:
Let f : Z+ → R be an increasing function. We say that an infinite word w is abelian f (n)-saturated if each factor of length n contains \Theta(f (n)) abelian nonequivalent factors. We show that binary infinite words cannot be abelian n^2-saturated, but, for any ε > 0, they can be abelian n^{2-ε}-saturated. There is also a sequence of finite words (w_n), with |w_n| = n, such that each w_n contains at least Cn^2 abelian nonequivalent factors for some constant C > 0. We also consider saturated words and their connection to palindromic richness in the case of equality and k-abelian equivalence.
Cite:
Avgustinovich S.
, Cassaigne J.
, Karhumäki J.
, Puzynina S.
, Saarela A.
On abelian saturated infinite words
Theoretical Computer Science. 2019. V.792. P.154-160. DOI: 10.1016/j.tcs.2018.05.013 WOS Scopus РИНЦ OpenAlex
On abelian saturated infinite words
Theoretical Computer Science. 2019. V.792. P.154-160. DOI: 10.1016/j.tcs.2018.05.013 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jan 18, 2018 |
Accepted: | May 10, 2018 |
Published print: | Nov 5, 2019 |
Identifiers:
Web of science: | WOS:000490648500012 |
Scopus: | 2-s2.0-85047205785 |
Elibrary: | 41782257 |
OpenAlex: | W2803511783 |