On abelian saturated infinite words Научная публикация
Журнал |
Theoretical Computer Science
ISSN: 0304-3975 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 792, Страницы: 154-160 Страниц : 7 DOI: 10.1016/j.tcs.2018.05.013 | ||||||||
Ключевые слова | Abelian equivalence; Combinatorics on words; Palindrome; Rich word | ||||||||
Авторы |
|
||||||||
Организации |
|
Реферат:
Let f : Z+ → R be an increasing function. We say that an infinite word w is abelian f (n)-saturated if each factor of length n contains \Theta(f (n)) abelian nonequivalent factors. We show that binary infinite words cannot be abelian n^2-saturated, but, for any ε > 0, they can be abelian n^{2-ε}-saturated. There is also a sequence of finite words (w_n), with |w_n| = n, such that each w_n contains at least Cn^2 abelian nonequivalent factors for some constant C > 0. We also consider saturated words and their connection to palindromic richness in the case of equality and k-abelian equivalence.
Библиографическая ссылка:
Avgustinovich S.
, Cassaigne J.
, Karhumäki J.
, Puzynina S.
, Saarela A.
On abelian saturated infinite words
Theoretical Computer Science. 2019. V.792. P.154-160. DOI: 10.1016/j.tcs.2018.05.013 WOS Scopus РИНЦ OpenAlex
On abelian saturated infinite words
Theoretical Computer Science. 2019. V.792. P.154-160. DOI: 10.1016/j.tcs.2018.05.013 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 18 янв. 2018 г. |
Принята к публикации: | 10 мая 2018 г. |
Опубликована в печати: | 5 нояб. 2019 г. |
Идентификаторы БД:
Web of science: | WOS:000490648500012 |
Scopus: | 2-s2.0-85047205785 |
РИНЦ: | 41782257 |
OpenAlex: | W2803511783 |