Sciact
  • EN
  • RU

Lie Rota-Baxter operators on the Sweedler algebra H4 Full article

Journal International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500
Output data Year: 2024, Volume: 34, Number: 08, Pages: 1159-1189 Pages count : 31 DOI: 10.1142/s0218196724500462
Tags Associative algebra; Lie algebra; Hopf algebra; Rota–Baxter operator.
Authors Bardakov Valeriy G. 1,2,3 , Nikonov Igor M. 4 , Zhelaybin Viktor N. 1
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State Agrarian University
3 Regional Scientific and Educational MathematicalCenter of Tomsk State University
4 Lomonosov Moskow State University

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0002
2 Russian Science Foundation 24-21-00102

Abstract: If A is an associative algebra, then we can define the adjoint Lie algebra A(−) and Jordan algebra A(+). It is easy to see that any associative Rota–Baxter (RB) operator on A induces a Lie and Jordan RB operator on A(−) and A(+), respectively. Are there Lie (Jordan) RB operators, which are not associative RB operators? In this paper, we explore these questions for the Sweedler algebra H4, which is a 4-dimensional non-commutative Hopf algebra. More precisely, we describe the RB operators on the adjoint Lie algebra H(−) 4 .
Cite: Bardakov V.G. , Nikonov I.M. , Zhelaybin V.N.
Lie Rota-Baxter operators on the Sweedler algebra H4
International Journal of Algebra and Computation. 2024. V.34. N08. P.1159-1189. DOI: 10.1142/s0218196724500462 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: May 26, 2024
Accepted: Sep 2, 2024
Published online: Oct 28, 2024
Published print: Jan 15, 2025
Identifiers:
Web of science: WOS:001347078500001
Scopus: 2-s2.0-85207903397
Elibrary: 73823058
OpenAlex: W4402527420
Citing: Пока нет цитирований
Altmetrics: