Stefan type problem for the generalized Radon transforms in an even-dimensional space Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 34, Number: 4, Pages: 261-267 Pages count : 7 DOI: 10.1134/S1055134424040011 | ||
Tags | Generalized Radon transform, integral geometry, probing, tomography, differential equation, discontinuous functions. | ||
Authors |
|
||
Affiliations |
|
Abstract:
We study a problem of integral geometry in which functions in variables are integrated over hyperplanes in an-dimensional Euclidean space. We call suchan integration the generalized Radon transform. If the integrand depends only on variables then this integration coincides with the classical one. In a broad sense, the problem of integral geometry is to obtain information about the integrand from the values of a family of integrals. In the present article, we considerthe problem on finding the discontinuity surface of the integrand. We prove that there existsa unique solution of the problem and suggest the corresponding algorithm. It is possible to usethe obtained results in the theory and practice of probing.
Cite:
Anikonov D.S.
, Konovalova D.S.
Stefan type problem for the generalized Radon transforms in an even-dimensional space
Siberian Advances in Mathematics. 2024. V.34. N4. P.261-267. DOI: 10.1134/S1055134424040011 Scopus РИНЦ
Stefan type problem for the generalized Radon transforms in an even-dimensional space
Siberian Advances in Mathematics. 2024. V.34. N4. P.261-267. DOI: 10.1134/S1055134424040011 Scopus РИНЦ
Original:
Аниконов Д.С.
, Коновалова Д.С.
Задача о неизвестной границе для обобщенного преобразования Радона в четно мерном пространстве
Математические труды. 2024. Т.27. №3. С.5–19. DOI: 10.25205/1560-750X-2024-27-3-5-19 РИНЦ
Задача о неизвестной границе для обобщенного преобразования Радона в четно мерном пространстве
Математические труды. 2024. Т.27. №3. С.5–19. DOI: 10.25205/1560-750X-2024-27-3-5-19 РИНЦ
Dates:
Submitted: | Sep 18, 2024 |
Accepted: | Oct 30, 2024 |
Published print: | Jan 14, 2025 |
Published online: | Jan 14, 2025 |
Identifiers:
Scopus: | 2-s2.0-85217406175 |
Elibrary: | 79610850 |
Citing:
Пока нет цитирований