Sciact
  • EN
  • RU

Stefan type problem for the generalized Radon transforms in an even-dimensional space Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2024, Volume: 34, Number: 4, Pages: 261-267 Pages count : 7 DOI: 10.1134/S1055134424040011
Tags Generalized Radon transform, integral geometry, probing, tomography, differential equation, discontinuous functions.
Authors Anikonov D.S. 1 , Konovalova D.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: We study a problem of integral geometry in which functions in variables are integrated over hyperplanes in an-dimensional Euclidean space. We call suchan integration the generalized Radon transform. If the integrand depends only on variables then this integration coincides with the classical one. In a broad sense, the problem of integral geometry is to obtain information about the integrand from the values of a family of integrals. In the present article, we considerthe problem on finding the discontinuity surface of the integrand. We prove that there existsa unique solution of the problem and suggest the corresponding algorithm. It is possible to usethe obtained results in the theory and practice of probing.
Cite: Anikonov D.S. , Konovalova D.S.
Stefan type problem for the generalized Radon transforms in an even-dimensional space
Siberian Advances in Mathematics. 2024. V.34. N4. P.261-267. DOI: 10.1134/S1055134424040011 Scopus РИНЦ
Original: Аниконов Д.С. , Коновалова Д.С.
Задача о неизвестной границе для обобщенного преобразования Радона в четно мерном пространстве
Математические труды. 2024. Т.27. №3. С.5–19. DOI: 10.25205/1560-750X-2024-27-3-5-19 РИНЦ
Dates:
Submitted: Sep 18, 2024
Accepted: Oct 30, 2024
Published print: Jan 14, 2025
Published online: Jan 14, 2025
Identifiers:
Scopus: 2-s2.0-85217406175
Elibrary: 79610850
Citing: Пока нет цитирований
Altmetrics: