Sciact
  • EN
  • RU

On the Asymptotic Behavior of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Periodic Functions in a Gevrey Class Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2024, Volume: 34, Number: 4, Pages: 273–279 Pages count : 7 DOI: 10.1134/S1055134424040035
Tags Compact set, Gevrey class, topological dimension, Alexandrov's n-width, amount of smoothness, unsaturation
Authors Belykh V.N. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We consider the compact set of C^{\infty}-smooth periodic functions in a Gevrey class that admits a bounded embedding into the space of continuous functions on the unit circle. We describe the asymptotic behavior of Alexandrov's n-width of this compact set.
Cite: Belykh V.N.
On the Asymptotic Behavior of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Periodic Functions in a Gevrey Class
Siberian Advances in Mathematics. 2024. V.34. N4. P.273–279. DOI: 10.1134/S1055134424040035 Scopus РИНЦ OpenAlex
Original: Белых В.Н.
Об асимптотике александровского n-поперечника компакта бесконечно гладких периодических функций класса Жевре
Математические труды. 2024. Т.27. №4. С.5-18. DOI: 10.25205/1560-750X-2024-27-4-5-18 РИНЦ
Dates:
Submitted: Sep 17, 2024
Accepted: Oct 10, 2024
Published print: Jan 14, 2025
Published online: Jan 14, 2025
Identifiers:
Scopus: 2-s2.0-85217393626
Elibrary: 79610852
OpenAlex: W4406373552
Citing: Пока нет цитирований
Altmetrics: