On the Asymptotic Behavior of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Periodic Functions in a Gevrey Class Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 34, Number: 4, Pages: 273–279 Pages count : 7 DOI: 10.1134/S1055134424040035 | ||
Tags | Compact set, Gevrey class, topological dimension, Alexandrov's n-width, amount of smoothness, unsaturation | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
We consider the compact set of C^{\infty}-smooth periodic functions in a Gevrey class that admits a bounded embedding into the space of continuous functions on the unit circle. We describe the asymptotic behavior of Alexandrov's n-width of this compact set.
Cite:
Belykh V.N.
On the Asymptotic Behavior of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Periodic Functions in a Gevrey Class
Siberian Advances in Mathematics. 2024. V.34. N4. P.273–279. DOI: 10.1134/S1055134424040035 Scopus РИНЦ OpenAlex
On the Asymptotic Behavior of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Periodic Functions in a Gevrey Class
Siberian Advances in Mathematics. 2024. V.34. N4. P.273–279. DOI: 10.1134/S1055134424040035 Scopus РИНЦ OpenAlex
Original:
Белых В.Н.
Об асимптотике александровского n-поперечника компакта бесконечно гладких периодических функций класса Жевре
Математические труды. 2024. Т.27. №4. С.5-18. DOI: 10.25205/1560-750X-2024-27-4-5-18 РИНЦ
Об асимптотике александровского n-поперечника компакта бесконечно гладких периодических функций класса Жевре
Математические труды. 2024. Т.27. №4. С.5-18. DOI: 10.25205/1560-750X-2024-27-4-5-18 РИНЦ
Dates:
Submitted: | Sep 17, 2024 |
Accepted: | Oct 10, 2024 |
Published print: | Jan 14, 2025 |
Published online: | Jan 14, 2025 |
Identifiers:
Scopus: | 2-s2.0-85217393626 |
Elibrary: | 79610852 |
OpenAlex: | W4406373552 |
Citing:
Пока нет цитирований