Sciact
  • EN
  • RU

Energy-efficient regular strip covering with fixed-size identical sectors Научная публикация

Конференция XXIII International Conference Mathematical Optimization Theory and Operations Research
30 июн. - 6 июл. 2024 , Омск
Сборник Mathematical Optimization Theory and Operations Research: Recent Trends
Сборник, Springer. 2024. 388 c. ISBN 978-3-031-73364-2.
Журнал Communications in Computer and Information Science
ISSN: 1865-0929
Вых. Данные Год: 2024, Том: 2239, Страницы: 161–171 Страниц : 11 DOI: 10.1007/978-3-031-73365-9_11
Ключевые слова Regular strip covering · Density minimization
Авторы Erzin Adil 1 , Anikeev Maxim 2
Организации
1 Sobolev Institute of Mathematics, SB RAS
2 Novosibirsk State University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0019

Реферат: We consider the problem of covering a strip with identical sectors of given size in order to minimize the coverage density. Early in the literature, researchers considered the problems of constructing strip covers with circles, ellipses, and sectors of minimum density by proposing various covering models and determining the optimal values of the parameters of the covering figures for each model. In this paper, we consider identical sectors as covering figures and specify their parameters instead of optimizing them. We propose several new covering models and found a formula for calculating density for each model. Unfortunately, these formulas are quite cumbersome, which did not allow us to compare the densities of all covers analytically. Therefore, we defined some properties programmatically. As a result, a minimum density coverage model was determined for different values of the sector’s parameters.
Библиографическая ссылка: Erzin A. , Anikeev M.
Energy-efficient regular strip covering with fixed-size identical sectors
В сборнике Mathematical Optimization Theory and Operations Research: Recent Trends. – Springer., 2024. – Т.2239. – C.161–171. – ISBN 978-3-031-73364-2. DOI: 10.1007/978-3-031-73365-9_11 Scopus OpenAlex
Даты:
Опубликована в печати: 20 дек. 2024 г.
Опубликована online: 20 дек. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85214230840
OpenAlex: W4405596766
Цитирование в БД: Пока нет цитирований
Альметрики: