Sciact
  • EN
  • RU

Maximin and maxisum network location problems with various metrics and minimum distance constraints Научная публикация

Конференция XXIII International Conference Mathematical Optimization Theory and Operations Research
30 июн. - 6 июл. 2024 , Омск
Сборник Mathematical Optimization Theory and Operations Research: Recent Trends
Сборник, Springer. 2024. 388 c. ISBN 978-3-031-73364-2.
Журнал Communications in Computer and Information Science
ISSN: 1865-0929
Вых. Данные Год: 2024, Том: 2239, Страницы: 126–139 Страниц : 14 DOI: 10.1007/978-3-031-73365-9_9
Ключевые слова Euclidean metric, Maximin criterion, Maxisum criterion, Obnoxious facility, Shortest paths
Авторы Zabudsky G. 1
Организации
1 Sobolev Institute of Mathematics SB RAS

Информация о финансировании (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0020

Реферат: The paper considers the problems of locating a facility on a road network connecting several settlements. The facility services the settlements, but has adverse effects on the population. The effects decrease as the distance from the facility to the settlements decreases. The study is conducted on the problems with criteria for maximizing the minimum distance from the facility to the nearest settlement (maximin) and maximizing the sum of distances from the facility to the settlements (maxisum). Constraints are imposed on the minimum feasible distances from the settlements to the facility and a budget for transportation costs for servicing the settlements by the facility. Euclidean metric is applied in objective functions and in constraints on minimum feasible distances. The shortest path metric is used to calculate transportation costs. Polynomial algorithms for searching all local optima of the problems are proposed.
Библиографическая ссылка: Zabudsky G.
Maximin and maxisum network location problems with various metrics and minimum distance constraints
В сборнике Mathematical Optimization Theory and Operations Research: Recent Trends. – Springer., 2024. – Т.2239. – C.126–139. – ISBN 978-3-031-73364-2. DOI: 10.1007/978-3-031-73365-9_9 Scopus OpenAlex
Даты:
Опубликована в печати: 20 дек. 2024 г.
Опубликована online: 20 дек. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85214276495
OpenAlex: W4405597592
Цитирование в БД: Пока нет цитирований
Альметрики: