Data discretization in prognostic models for epidemiology Научная публикация
Журнал |
Cifra. Медико-биологические науки
, E-ISSN: 3034-3119 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2024, Номер: 3, Номер статьи : 2, Страниц : 6 DOI: 10.60797/BMED.2024.3.2 | ||||
Ключевые слова | epidemiology, neural network, prognosis, discretization. | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 23-71-10068 |
Реферат:
After COVID-19 pandemic, the epidemilogical data prediction had become of a great importance. Since that, numerous different prognostic models, including those involving neural-network based, have been developed, applied and verified. Shortterm models are capable to reproduce the oscillacion, but incapable to make a long term prognosis; long-term ones suffer from the noise in the data and require its reduction. In this paper, we propose a method of data prediction using values range discretization as an alternative to the smoothing to get rid of noise-borne problems and applying lag prediction. It is shown that the approach is capable to improve the prognosis quality even for the irregurlar data. Keywords: epidemiology, neural network, prognosis, discretization.
Библиографическая ссылка:
Elistratov S.A.
Data discretization in prognostic models for epidemiology
Cifra. Медико-биологические науки. 2024. N3. 2 :1-6. DOI: 10.60797/BMED.2024.3.2 РИНЦ
Data discretization in prognostic models for epidemiology
Cifra. Медико-биологические науки. 2024. N3. 2 :1-6. DOI: 10.60797/BMED.2024.3.2 РИНЦ
Даты:
Принята к публикации: | 12 дек. 2024 г. |
Опубликована в печати: | 27 дек. 2024 г. |
Опубликована online: | 27 дек. 2024 г. |
Идентификаторы БД:
РИНЦ: | 77259727 |
Цитирование в БД:
Пока нет цитирований