Sciact
  • EN
  • RU

Data discretization in prognostic models for epidemiology Научная публикация

Журнал Cifra. Медико-биологические науки
, E-ISSN: 3034-3119
Вых. Данные Год: 2024, Номер: 3, Номер статьи : 2, Страниц : 6 DOI: 10.60797/BMED.2024.3.2
Ключевые слова epidemiology, neural network, prognosis, discretization.
Авторы Elistratov S.A. 1,2
Организации
1 Sobolev Institute of Mathematics of SB of RAS
2 Ivannikov Institute for System Programming of RAS

Информация о финансировании (1)

1 Российский научный фонд 23-71-10068

Реферат: After COVID-19 pandemic, the epidemilogical data prediction had become of a great importance. Since that, numerous different prognostic models, including those involving neural-network based, have been developed, applied and verified. Shortterm models are capable to reproduce the oscillacion, but incapable to make a long term prognosis; long-term ones suffer from the noise in the data and require its reduction. In this paper, we propose a method of data prediction using values range discretization as an alternative to the smoothing to get rid of noise-borne problems and applying lag prediction. It is shown that the approach is capable to improve the prognosis quality even for the irregurlar data. Keywords: epidemiology, neural network, prognosis, discretization.
Библиографическая ссылка: Elistratov S.A.
Data discretization in prognostic models for epidemiology
Cifra. Медико-биологические науки. 2024. N3. 2 :1-6. DOI: 10.60797/BMED.2024.3.2 РИНЦ
Даты:
Принята к публикации: 12 дек. 2024 г.
Опубликована в печати: 27 дек. 2024 г.
Опубликована online: 27 дек. 2024 г.
Идентификаторы БД:
РИНЦ: 77259727
Цитирование в БД: Пока нет цитирований
Альметрики: